Diabetes mellitus y COVID-19: fisiopatología y propuesta de tratamiento para el control glucémico en el tiempo de la pandemia

Palabras clave: Coronavirus, COVID-19, Diabetes Mellitus, Glucosa Sanguínea, Virus del SRAS

Resumen

El coronavirus 2 del síndrome respiratorio agudo grave es el tercer betacoronavirus desde el año 2003 capaz de ocasionar una infección del tracto respiratorio inferior, llevando, en casos críticos, al síndrome de dificultad respiratoria aguda y la muerte.

La edad avanzada, la hipertensión arterial y la diabetes mellitus son, entre otros, tres factores determinantes en los peores desenlaces clínicos. Múltiples mecanismos pueden explicar la mayor susceptibilidad de las personas diabéticas a las infecciones respiratorias. La hiperglucemia crónica altera tanto a la inmunidad humoral como al celular. Esta enfermedad predispone a la sobreexpresión de la proteína de la membrana celular que sirve como receptora del virus y a una respuesta inflamatoria exacerbada, aumentando el riesgo de una descompensación y de la aparición de crisis hiperglicémicas.

Ante la ausencia de un tratamiento efectivo o de una vacuna, todos los esfuerzos deben hacerse para procurar un buen control metabólico de los pacientes con diabetes mellitus con y sin COVID-19. Por lo anterior, se plantean en este artículo de reflexión, diferentes propuestas para el tratamiento de la diabetes mellitus en la unidad de cuidados intensivos, sin descartar la forma ambulatoria, en donde la telemedicina y otras tecnologías permitirán acortar la distancia y mantener las medidas de aislamiento preventivo.

|Resumen
= 358 veces | PDF
= 397 veces|

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Alejandro Román-González, Universidad de Antioquia

Profesor de Medicina Interna, Universidad de Antioquia. Internista Endocrinólogo, Hospital Universitario San Vicente Fundación, Medellín, Colombia.

Luis Antonio Rodríguez, Universidad de Antioquia

Residente de Endocrinología Clínica y Metabolismo, Universidad de Antioquia, Medellín, Colombia.

Carlos Alfonso Builes-Barrera, Universidad de Antioquia

Profesor de Medicina Interna, Universidad de Antioquia. Internista Endocrinólogo, Hospital Universitario San Vicente Fundación, Medellín, Colombia.

Diva Cristina Castro, Universidad de Antioquia

Profesor de Medicina Interna, Universidad de Antioquia. Internista Endocrinólogo, Hospital Universitario San Vicente Fundación, Medellín, Colombia.

Carlos Esteban Builes-Montaño, Universidad de Antioquia

Profesor de Medicina Interna, Universidad de Antioquia. Internista Endocrinólogo, Hospital Pablo Tobón Uribe, Medellín, Colombia.

Clara María Arango-Toro, Universidad de Antioquia

Profesor de Medicina Interna, Universidad de Antioquia. Internista Endocrinólogo, Hospital Pablo Tobón Uribe, Medellín, Colombia.

Johnayro Gutiérrez-Restrepo, Universidad de Antioquia

Profesor de Medicina Interna, Universidad de Antioquia. Internista Endocrinólogo. Clínica Somer, Rionegro, Antioquia.

Juan David Gómez, Universidad de Antioquia

Profesor de Medicina Interna, Universidad de Antioquia. Internista Endocrinólogo, Hospital Universitario San Vicente Fundación, Medellín, Colombia.

Citas

(1) Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109:531-38. DOI 10.1007/s00392-020-01626-9.

(2) Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th ed. Diabetes Res Clin Pract. 2019 Nov;157:107843. DOI 10.1016/j.diabres.2019.107843.

(3) Maddaloni E, Buzzetti R. Covid-19 and diabetes mellitus: unveiling the interaction of two pandemics. Diabetes Metab Res Rev. 2020:e33213321. DOI 10.1002/dmrr.3321.

(4) Team CC-R. Preliminary Estimates of the Prevalence of Selected Underlying Health Conditions Among Patients with Coronavirus Disease 2019 - United States, February 12-March 28, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(13):382-6. DOI 10.15585/mmwr.mm6913e2.

(5) Wang A, Zhao W, Xu Z, Gu J. Timely blood glucose management for the outbreak of 2019 novel coronavirus disease (COVID-19) is urgently needed. Diabetes Res Clin Pract. 2020 Apr;162:108118. DOI 10.1016/j.diabres.2020.108118.

(6) Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis. 2020 May;94:91-5. DOI 10.1016/j.ijid.2020.03.017.

(7) Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020 Jul 1;180(7):934-43. DOI 10.1001/jamainternmed.2020.0994.

(8) Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. DOI 10.1016/S0140-6736(20)30566-3.

(9) Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020:e3319. DOI 10.1002/dmrr.3319.

(10) Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a singlecentered,retrospective, observational study. Lancet Respir Med. 2020;(8)5:475-81. DOI 10.1016/S2213-2600(20)30079-5.

(11) Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020. DOI 10.1101/2020.02.06.20020974.

(12) Zhang Y, Yanhui C, Shen M, Jianchu Z, Liu B, Dai M, et al. Comorbid Diabetes Mellitus was Associated with Poorer Prognosis in Patients with COVID-19: A Retrospective Cohort Study. MedRxiv. 2020. DOI 10.1101/2020.03.24.20042358.

(13) RNDV. Informe sobre la situación de COVID-19 en España a 27 de abril de 2020. [internet]. [Consultado 2020 mar 20]. Disponible en: https://bit.ly/2GyVYhq

(14) Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574-81. DOI 10.1001/jama.2020.5394.

(15) Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al. Comorbidity and its impact on 1590 patients with Covid-19 in China: A Nationwide Analysis. Eur Respir J. 2020 Jun 11;55(6):2001227. DOI 10.1183/13993003.01227-2020.

(16) Muller LMAJ, Gorter KJ, Hak E, Goudzwaard WL, Schellevis FG, Hoepelman AIM, et al. Increased Risk of Common Infections in Patients with Type 1 and Type 2 Diabetes Mellitus. Clinical Infectious Diseases. 2005;41(3):281-8. DOI 10.1086/431587.

(17) Abu-Ashour W, Twells LK, Valcour JE, Gamble J-M. Diabetes and the occurrence of infection in primary care: a matched cohort study. BMC Infectious Diseases. 2018;18(1):67. DOI 10.1186/s12879-018-2975-2.

(18) Ahmed MS, Reid E, Khardori N. Respiratory infections in diabetes: Reviewing the risks and challenges. The Journal of Respiratory Diseases. 2008;29(7):285.

(19) Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunology & Medical Microbiology. 1999;26(3-4):259-65. DOI 10.1111/j.1574-695X.1999.tb01397.x.

(20) Price CL, Hassi HOA, English NR, Blakemore AI, Stagg AJ, Knight SC. Methylglyoxal modulates immune responses: relevance to diabetes. Journal of cellular and molecular medicine. 2010;14(6b):1806-15. DOI 10.1111/j.1582-4934.2009.00803.x.

(21) Asanuma Y, Fujiya S, Ide H, Agishi Y. Characteristics of pulmonary function in patients with diabetes mellitus. Diabetes research and clinical practice. 1985;1(2):95-101. DOI 10.1016/S0168-8227(85)80034-6.

(22) Hulme KD, Gallo LA, Short KR. Influenza Virus and Glycemic Variability in Diabetes: A Killer Combination? Front Microbiol. 2017;8. DOI 10.3389/fmicb.2017.00861.

(23) Kohio HP, Adamson AL. Glycolytic control of vacuolar-type ATPase activity: a mechanism to regulate influenza viral infection. Virology. 2013;444(1-2):301-9. DOI 10.1016/j.virol.2013.06.026.

(24) Reading PC, Allison J, Crouch EC, Anders EM. Increased susceptibility of diabetic mice to influenza virusinfection: compromise of collectin-mediated host defense of the lung by glucose? Journal of virology. 1998;72(8):6884-7. DOI 10.1128/JVI.72.8.6884-6887.1998.

(25) Garnett JP, Baker EH, Naik S, Lindsay JA, Knight GM, Gill S, et al. Metformin reduces airway glucose permeability and hyperglycaemia-induced Staphylococcus aureus load independently of effects on blood glucose. Thorax. 2013;68(9):835-45. DOI 10.1136/thoraxjnl-2012-203178.

(26) Short KR, Habets MN, Hermans PW, Diavatopoulos DA. Interactions between Streptococcus pneumoniae and influenza virus: a mutually beneficial relationship? Future microbiology. 2012;7(5):609-24. DOI 10.2217/fmb.12.29.

(27) Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, Dwosh HA, et al. Clinical features and shortterm outcomes of 144 patients with SARS in the greater Toronto area. JAMA. 2003;289(21):2801-9. DOI 10.1001/jama.289.21.JOC30885.

(28) Chan JW, Ng CK, Chan YH, Mok TY, Lee S, Chu SY, et al. Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS). Thorax. 2003;58(8):686-9. DOI 10.1136/thorax.58.8.686.

(29) Badawi A, Ryoo SG. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and metaanalysis. International Journal of Infectious Diseases. 2016;49:129-33. DOI 10.1016/j.ijid.2016.06.015.

(30) Reina J, López-Causapé C, Rojo-Molinero E, Rubio R. Clinico-epidemiological characteristics of acute respiratory infections by coronavirus OC43, NL63 and 229E. Revista Clínica Española (English Edition). 2014;214(9):499-504. DOI 10.1016/j.rce.2014.05.020.

(31) Vandroux D, Allou N, Jabot J, Li Pat Yuen G, Brottet E, Roquebert B, et al. Intensive care admission for Coronavirus OC43 respiratory tract infections. Med Mal Infect. 2018;48(2):141-4. DOI 10.1016/j.medmal.2018.01.001.

(32) Yang J, Feng Y, Yuan M, Yuan S, Fu H, Wu B, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabetic medicine. 2006;23(6):623-8. DOI 10.1111/j.1464-5491.2006.01861.x.

(33) Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 Apr 16;181(2):271-280.e8. DOI 10.1016/j.cell.2020.02.052.

(34) Simões e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013 Jun;169(3):477-92. DOI 10.1111/bph.12159.

(35) Yang J-K, Lin S-S, Ji X-J, Guo L-M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta diabetologica. 2010;47(3):193-9. DOI 10.1007/s00592-009-0109-4.

(36) Xue T, Li Q, Zhang Q, Lin W, Wen J, Li L, et al. Blood glucose levels in elderly subjects with type 2 diabetes during COVID-19 outbreak: a retrospective study in a single center. medRxiv. 2020. DOI 10.1101/2020.03.31.20048579.

(37) Bindom SM, Lazartigues E. The sweeter side of ACE2: physiological evidence for a role in diabetes. Mol Cell Endocrinol. 2009;302(2):193-202. DOI 10.1016/j.mce.2008.09.020.

(38) Wysocki J, Ye M, Soler MJ, Gurley SB, Xiao HD, Bernstein KE, et al. ACE and ACE2 Activity in Diabetic Mice. Diabetes. 2006;55(7):2132-9. DOI 10.2337/db06-0033.

(39) Peleg AY, Weerarathna T, McCarthy JS, Davis TM. Common infections in diabetes: pathogenesis, management and relationship to glycaemic control. Diabetes/metabolism research and reviews. 2007;23(1):3-13. DOI 10.1002/dmrr.682.

(40) Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. DOI 10.1016/S0140-6736(20)30628-0.

(41) Zhou J, Tan J. Diabetes patients with COVID-19 need better care. Metabolism. 2020:154216. DOI 10.1016/j.metabol.2020.154216.

(42) Association AD. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S66-S76. DOI 10.2337/dc20-S006.

(43) Muniyappa R, Gubbi S. COVID-19 Pandemic, Corona Viruses, and Diabetes Mellitus. Am J Physiol Endocrinol Metab. 2020; 318(5):E736-E741. DOI 10.1152/ajpendo.00124.2020.

(44) Gupta R, Ghosh A, Singh AK, Misra A. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab Syndr. 2020;14(3):211-2. DOI 10.1016/j.dsx.2020.03.002.

(45) Román-González A, Cardona A, Gutiérrez J, Palacio A. Management of diabetes in hospitals. Rev Fac Med. 2018;66(3):8. DOI 10.15446/revfacmed.v66n3.61890.

(46) Association AD. 15. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S193-S202. DOI 10.2337/dc20-S015.

(47) Iacobellis G. COVID-19 and Diabetes: can DPP4 inhibition play a role? Diabetes Res Clin Pract. 2020:108125. DOI 10.1016/j.diabres.2020.108125.

(48) Pasquel FJ, Gianchandani R, Rubin DJ, Dungan KM, Anzola I, Gomez PC, et al. Efficacy of sitagliptin for the hospital management of general medicine and surgery patients with type 2 diabetes (Sita-Hospital): a multicentre, prospective, open-label, non-inferiority randomised trial. Lancet Diabetes Endocrinol. 2016;5(2):125-33. DOI 10.1016/S2213-8587(16)30402-8.

Publicado
2021-04-01
Cómo citar
1.
Román-GonzálezA, Rodríguez LA, Builes-BarreraCA, Castro DC, Builes-MontañoCE, Arango-ToroCM, Gutiérrez-RestrepoJ, Gómez JD. Diabetes mellitus y COVID-19: fisiopatología y propuesta de tratamiento para el control glucémico en el tiempo de la pandemia. Iatreia [Internet]. 1 de abril de 2021 [citado 5 de mayo de 2021];34(2):161-71. Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/view/341746
Sección
Artículos de reflexión