Exergy diagnosis of the combustion process in a Diesel engine

Authors

  • Andrés Agudelo Universidad de Antioquia
  • John Agudelo Universidad de Antioquia
  • Pedro Benjumea Universidad Nacional de Colombia

DOI:

https://doi.org/10.17533/udea.redin.17965

Keywords:

Exergy analysis, combustion diagnosis, diesel engines

Abstract

In this work a single-zone and two-species exergy diagnosis model is developed and applied for characterizing the operation of a diesel engine from a secondlaw standpoint. The model allows to study the in-cylinder process during the closed-valve period, and to determine how the exergy is distributed and what is the exergy potential of the losses. Experiments were carried out in a test bed equipped with an automotive, direct injection, turbocharged diesel engine operating at several loads. Combustion diagnosis was made from instantaneous in-cylinder pressure signal and the main operation parameters of the engine were measured in order to guarantee steady state. Irreversibilities and exergy distribution throughout the process were determined. It was found that combustion is the main source of irreversibilities. Results show that exergy destruction decreases as load increases, which mainly led to an increase in the exergy of exhaust gases. Additionally, the cogeneration potential of the engine was identified, exhibiting significant differences between first and second-law results.

|Abstract
= 248 veces | PDF (ESPAÑOL (ESPAÑA))
= 104 veces|

Downloads

Download data is not yet available.

Author Biographies

Andrés Agudelo, Universidad de Antioquia

Grupo de Manejo Eficiente de la Energía –GIMEL–

John Agudelo , Universidad de Antioquia

Grupo de Manejo Eficiente de la Energía –GIMEL–

Pedro Benjumea, Universidad Nacional de Colombia

Grupo de Combustibles Alternativos

References

I. Dincer, Y. A. Cengel. “Energy, entropy and exergy concepts and their roles in thermal engineering”. Entropy. Vol. 3. 2001. pp. 116-149. DOI: https://doi.org/10.3390/e3030116

M. A. Rosen. “Second-law analysis: approaches and implications”. Int. J. Energy Res. Vol. 23. 1999. pp. 415-429. DOI: https://doi.org/10.1002/(SICI)1099-114X(199904)23:5<415::AID-ER489>3.3.CO;2-Z

R. A. Gaggioli. “Available energy and exergy”. Int. J. Applied Thermodynamics. Vol. 1. 1998. pp. 1-8.

A. C. Alkidas. “The application of availability and energy balances to a diesel engine”. Journal for Engineering of Gas Turbines and Power. Vol. 110.1988. pp. 462-469. DOI: https://doi.org/10.1115/1.3240143

R. J. Primus, P. F. Flynn. “Diagnosing the real perfor¬mance impact of Diesel engine design parameter va¬riation (A primer in the use of second law analysis)”. International Symposium on Diagnostics and Modeling of Combustion in Reciprocating Engines (COMO¬DIA 85). 1985. pp. 529-538.

J. A. Caton. “A review of investigations using the second law of thermodynamics to study internal combustion engines”. SAE 2000-01-1081. 2000. DOI: https://doi.org/10.4271/2000-01-1081

C. D. Rakopoulos, E. G. Giakoumis. “Second-law analyses applied to internal combustion engines operation”. Progress in Energy and Combustion Science. Vol. 32. 2006. pp. 2-47. DOI: https://doi.org/10.1016/j.pecs.2005.10.001

F. Bozza, R. Nocera, A. Senatore, R. Tuccillo. “Second law analysis of turbocharged engine operation”. SAE 910418. 1991. DOI: https://doi.org/10.4271/910418

W. L. R. Gallo, L. F. Milanez. “Exergetic analysis of ethanol and gasoline fueled engines”. SAE 920809. 1992. DOI: https://doi.org/10.4271/920809

J. A. Velásquez, L. F. Milanez. “Analysis of the irreversibilities in diesel engines”. SAE 940673. 1994. DOI: https://doi.org/10.4271/940673

A. F. Agudelo. Diagnóstico termodinámico de motores diesel de inyección directa funcionando con ésteres metílicos de aceites vegetales. Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla - La Mancha, Ciudad Real, 2004.

A. F. Agudelo, J. R. Agudelo, P. N. Benjumea. Diag¬nóstico de la combustión de biocombustibles en motores. Imprenta Universidad de Antioquia. Medellín. 2007.

D. E. Foster. “An overview of zero-dimensional thermodynamic models for IC engine data analysis”. SAE 852070. 1985. DOI: https://doi.org/10.4271/852070

J. A. Caton. “Results from the second-law of thermodynamics for a spark-ignition engine using an engine cycle simulation”. Fall Technical Conference, ASME-ICED. 1999. pp. 35-49.

H. N. Shapiro, J. H. Van Gerpen. “Two zone combus¬tion models for second law analysis of internal combustion engines”. SAE 890823. 1989. DOI: https://doi.org/10.4271/890823

A. Valero, M. Lozano. “Energy, entropy, exergy and free energy balances. Methods for the diagnosis of industrial facilities”. Ingeniería Química. Mayo 1987. pp. 143-153.

M. J. Moran, H. N. Shapiro. Fundamentals of Engineering Thermodynamics. 5ª ed. The Atrium, John Wiley & Sons. N.Y. 2006.

G. Woschni. “A universally aplicable ecuation for the instantaneous heat transfer coefficient in the internal combustion engine”. SAE 670931. 1967. DOI: https://doi.org/10.4271/670931

C. D. Rakopoulos. “Evaluation of a spark ignition en¬gine cycle using first and second law analysis techniques”. Energy Conversion and Management. Vol. 34. 1993. pp. 1299-1314. DOI: https://doi.org/10.1016/0196-8904(93)90126-U

O. Armas. Diagnóstico experimental del proceso de combustión en motores Diesel de inyección directa, Departamento de Máquinas y Motores Térmicos, Uni¬versidad Politécnica de Valencia. Valencia. 1998.

J. Li, L. Zhou, K. Pan, D. Jiang, J. Chae. “Evaluation of the thermodynamic process of indirect injection die¬sel engines by the first and second law”. SAE 952055. 1995. DOI: https://doi.org/10.4271/952055

T. J. Kotas. The exergy method of thermal plant analy¬sis. Krieger Publishing Company. Malabar. Florida. 1995.

D. C. Kyritsis, C. D. Rakopoulos. “Parametric study of the availability balance in an internal combustion engine cylinder”. SAE 2001-01-1263. 2001. DOI: https://doi.org/10.4271/2001-01-1263

C. D. Rakopoulos, D. C. Kyritsis. “Comparative second-law analysis of internal combustion engine ope¬ration for methane, methanol, and dodecane fuels”. Energy Vol. 26. 2001.pp. 705-722. DOI: https://doi.org/10.1016/S0360-5442(01)00027-5

B. D. Hsu. Practical diesel-engine combustion analysis. Warrendale, Society of Automotive Engineers - SAE. 2002. DOI: https://doi.org/10.4271/R-327

G. Hohenberg. “Definition und Eigenschaften des Thermodynamischen Verlustwinkels von Kolvenmaschinen (Definición y propiedades del ángulo de pérdidas termodinámicas en máquinas de pistones)”. Auto¬mobil-Industrie. Vol. 4. 1976.

M. K. Anderson, D. N. Assanis, Z. S. Filipi.”First and second law analyses of a naturally-aspirated, Miller cycle, SI engine with late intake valve closure”. SAE 980889. 1998. DOI: https://doi.org/10.4271/980889

J. A. Caton. “On the destruction of availability (exergy) due to combustion processes – with specific application to internal-combustion engines”, Energy. Vol. 25. 2000. pp. 1097-1117. DOI: https://doi.org/10.1016/S0360-5442(00)00034-7

P. S. Chavannavar, J. A. Caton. “Destruction of availability (exergy) due to combustion processes: A parametric study”. Proc. Instn. Mech. Engrs. Part A. Vol. 220. 2006, pp. 655-669. DOI: https://doi.org/10.1243/09576509JPE267

W. R. Dunbar, N. Lior. “Sources of combustion irreversibility”. Combustion Science and Technology. Vol. 103. 1994.pp. 41-61. DOI: https://doi.org/10.1080/00102209408907687

C. D. Rakopoulos, E. G. Giakoumis. “Availability analysis of a turbocharged diesel engine operating under transient load conditions”. Energy. Vol. 29. 2004. pp. 1085-1104. DOI: https://doi.org/10.1016/j.energy.2004.02.028

K. Nakonieczny. “Entropy generation in a diesel engi¬ne turbocharging system”. Energy, Vol. 27. 2002. pp. 1027-1056. DOI: https://doi.org/10.1016/S0360-5442(02)00082-8

S. H. Chan. “Thermodynamics in a turbocharged direct injection Diesel engine”, Proc. Instn. Mech. Engrs., Part D. Vol. 212. 1998. pp. 11-24. DOI: https://doi.org/10.1243/0954407981525768

R. K. Stobart. “An availability approach to thermal energy recovery in vehicles”. Proc. Instn. Mech. En¬grs. Part D. Vol. 221. 2007. pp. 1107-1124. DOI: https://doi.org/10.1243/09544070JAUTO463

I. Taymaz. “An experimental study of energy balance in low heat rejection diesel engine”. Energy. Vol. 31. 2006. pp. 364-371. DOI: https://doi.org/10.1016/j.energy.2005.02.004

E. G. Giakoumis. “Cylinder wall insulation effects on the first- and second-law balances of a turbocharged diesel engine operating under transient load conditions”. Energy Conversion and Management. doi:10.1016/j.enconman. 2007.07.013, 2007. DOI: https://doi.org/10.1016/j.enconman.2007.07.013

G. Descombes, F. Maroteaux, M. Feidt, “Study of the interaction between mechanical energy and heat exchanges applied to IC engines”, Applied Thermal Engineering. Vol. 23. 2003. pp. 2061–2078. DOI: https://doi.org/10.1016/S1359-4311(03)00160-1

A. Parlak. “The effect of heat transfer on performance of the Diesel cycle and exergy of the exhaust gas stream in a LHR Diesel engine at the optimum injection timing”. Energy Conversion and Management. Vol. 46. 2005. pp. 167-179. DOI: https://doi.org/10.1016/j.enconman.2004.03.001

A. Parlak, H. Yasar, O. Eldogan. “The effect of ther¬mal barrier coating on a turbo-charged Diesel engine performance and exergy potential of the exhaust gas”. Energy Conversion and Management. Vol. 46. 2005. pp. 489-499. DOI: https://doi.org/10.1016/j.enconman.2004.03.006

Published

2013-12-13

How to Cite

Agudelo, A., Agudelo , J., & Benjumea, P. (2013). Exergy diagnosis of the combustion process in a Diesel engine. Revista Facultad De Ingeniería Universidad De Antioquia, (45), 41–53. https://doi.org/10.17533/udea.redin.17965

Most read articles by the same author(s)

1 2 > >>