Microbiota intestinal y ácidos grasos de cadena corta en pacientes críticos

Autores/as

  • Gloria M. Agudelo Ochoa Universidad de Antioquia https://orcid.org/0000-0001-7288-7710
  • Nubia A. Giraldo Giraldo Universidad de Antioquia
  • Carlos J. Barrera Causil Instituto Tecnológico Metropolitano de Medellín
  • Beatriz E. Valdés Duque Institución Universitaria Colegio Mayor de Antioquia

DOI:

https://doi.org/10.17533/udea.penh.v18n2a06

Palabras clave:

paciente crítico, microbiota, ácidos grasos de cadena corta, síndrome de respuesta inflamatoria sistémica, probióticos, prebióticos, simbióticos.

Resumen

Introducción: diversos estudios han mostrado cambios en la microbiota intestinal (MI) y los ácidos grasos de cadena corta (AGCC) en pacientes críticos con síndrome de respuesta inflamatoria sistémica (SRIS). Objetivo: revisar la evidencia sobre el papel de la MI y los AGCC en pacientes críticos y su modulación con prebióticos, probióticos y simbióticos. Metodología: búsqueda de artículos en bases de datos bibliográficas Pubmed, Science Direct, Ovid, Medline y Scopus, utilizando como descriptores microbiota, paciente crítico, unidad de cuidados intensivos, síndrome de respuesta inflamatoria sistémica, ácidos grasos de cadena corta, probióticos, prebióticos y simbióticos. Resultados: la MI en pacientes críticos está disminuida tanto en número de bacterias como en diversidad, lo cual puede resultar en una desregulación de la respuesta inmune sistémica ante la invasión de microorganismos patógenos. Los cambios en los AGCC en pacientes críticos se atribuyen a una disminución de bacterias anaerobias obligadas y sustratos de fermentación necesarios para su producción. La modulación de la MI con probióticos, prebióticos y simbióticos sugiere mejoría en la función intestinal. Conclusiones: la MI y los AGCC en pacientes críticos se encuentran alterados, de ahí que mantener el equilibrio en el entorno intestinal probablemente desempeñe una función clave para disminuir complicaciones y mejorar su pronóstico.

|Resumen
= 1440 veces | PDF
= 995 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Gloria M. Agudelo Ochoa, Universidad de Antioquia

Nutricionista Dietista. Docente vinculada tiempo completo Escuela de Nutrición y Dietética. 

Nubia A. Giraldo Giraldo, Universidad de Antioquia

MSc Epidemiología. Nutricionista Dietista. Docente vinculada tiempo completo Escuela de Nutrición y Dietética

Carlos J. Barrera Causil, Instituto Tecnológico Metropolitano de Medellín

PhD en Ciencias Estadísticas. Estadístico. Grupo de Investigación Da vinci

Beatriz E. Valdés Duque, Institución Universitaria Colegio Mayor de Antioquia

Doctorado en Ciencia de los Alimentos. Bacterióloga. Grupo de Investigación Biociencias. Docente ocasional, Institución Universitaria Colegio Mayor de Antioquia

Citas

Shimizu K, Ogura H, Asahara T, Nomoto K, Morotomi M, Tasaki O, et al. Probiotic/synbiotic therapy for treating critically Ill patients from a gut microbiota perspective. Dig Dis Sci. 2013;58:23-32. DOI: 10.1007/s10620-012-2334-x

Yamada T, Shimizu K, Ogura H, Asahara T, Nomoto K, Yamakawa K, et al. Rapid and sustained long-term decrease of fecal short-chain fatty acids in critically Ill patients with systemic inflammatory response syndrome. JPEN J Parenter Enteral Nutr. 2015;39:569-77. DOI: 10.1177/0148607114529596

Mittal R, Coopersmith CM. Redefining the gut as the motor of critical illness. Trends Mol Med. 2014;20:214-23. DOI: 10.1016/j.molmed.2013.08.004

Clark JA, Coopersmith CM. Intestinal crosstalk: a new paradigm for understanding the gut as the “motor” of critical illness. Shock. 2007;28:384-93. DOI 10.1097/shk.0b013e31805569df

Arumugam M, Raes J, Pelletier E, Paslier D Le, Batto J, Yamada T, et al. Enterotypes of the human gut microbiome. Nature. 2013;473:174-80. DOI: 10.1038/nature09944

Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207-14. DOI: 10.1038/nature11234

Kussmann M, Van Bladeren PJ. The extended nutrigenomics - understanding the interplay between the genomes of food, gut microbes, and human host. Front Genet. 2011;2:1-13. DOI: 10.3389/fgene.2011.00021

de Vos WM, de Vos E a J. Role of the intestinal microbiome in health and disease: From correlation to causation. Nutr Rev. 2012;70:45-56. DOI: 10.1111/j.1753-4887.2012.00505.x

Vinolo MR, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3:858‑76. DOI: 10.3390/nu3100858

Stechmiller JK, Treloar D, Allen N. Gut dysfunction in critically ill patients: a review of the literature. Am J Crit Care. 1997;6:204-9.

Alverdy JC, Chang EB. The re-emerging role of the intestinal microflora in critical illness and inflammation: why the gut hypothesis of sepsis syndrome will not go away. J Leukoc Biol. 2008;83:461-66. DOI: 10.1189/jlb.0607372

Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165-228. DOI: 10.1007/s00134-012-2769-8

Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013;41:1167-74. DOI: 10.1097/CCM.0b013e31827c09f8

Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M. Human gut microbiome viewed across age and geography. Nature. 2012;486:222-7. DOI: 10.1038/nature11053

Zoetendal EG, Vaughan EE, De Vos WM. A microbial world within us. Mol Microbiol. 2006;59:1639-50. DOI: 10.1111/j.1365-2958.2006.05056.x

Ley RE, Peterson DA., Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837-48. DOI: 10.1016/j.cell.2006.02.017

Shimizu K, Ogura H, Goto M, Asahara T, Nomoto K, Morotomi M, et al. Altered gut flora and environment in patients with severe SIRS. J Trauma. 2006;60:126-33. DOI: 10.1097/01.ta.0000197374.99755.fe

Schuijt TJ, van der Poll T, de Vos WM, Wiersinga WJ. The intestinal microbiota and host immune interactions in the critically ill. Trends Microbiol. 2013;21:221-9. DOI: 10.1016/j.tim.2013.02.001

D’Argenio V, Salvatore F. The role of the gut microbiome in the healthy adult status. Clin Chim Acta. 2015;451:97-102. DOI: 10.1016/j.cca.2015.01.003

Brooks SPJ, Green-Johnson J, Inglis GD, Uwiera RRE, Kalmokoff M. Gut microbiology – a relatively unexplored domain. In: Butler M and Webb C. Comprehensive Biotechnology. 2a ed. Ámsterdam: Elsevier; 2011. p. 575-90.

Peris-bondia F. Fraccionando la microbiota gastrointestinal humana [tesis doctoral en Biodiversidad]. Valencia: Universidad de Valencia; 2012.

Candela M, Consolandi C, Severgnini M, Biagi E, Castiglioni B, Vitali B, et al. High taxonomic level fingerprint of the human intestinal

microbiota by ligase detection reaction – universal array approach. BMC Microbiol. 2010;10:116. DOI: 10.1186/1471-2180-10-116.

O’Toole PW, Claesson MJ. Gut microbiota: Changes throughout the lifespan from infancy to elderly. Int Dairy J. 2010;20:281-91. DOI: 10.1016/j.idairyj.2009.11.010

Patindol JA, Guraya HS, Champagne ET, McClung AM. Nutritionally important starch fractions of rice cultivars grown in Southern United States. J Food Sci. 2010;75:H137-44. DOI: 10.1111/j.1750-3841.2010.01627.x

Pan X, Chen F, Wu T, Tang H, Zhao Z. Prebiotic oligosaccharides change the concentrations of short-chain fatty acids and the microbial population of mouse bowel. J Zhejiang Univ Sci B. 2009;10:258-63. DOI: 10.1631/jzus.B0820261

Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62:67-72. DOI: 10.1079/PNS2002207

Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40:235-43.

Cronin M, Ventura M, Fitzgerald GF, van Sinderen D. Progress in genomics, metabolism and biotechnology of bifidobacteria. Int J Food Microbiol. 2011;149:4-18. DOI: 10.1016/j.ijfoodmicro.2011.01.019

Ragsdale SW, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. BBA Proteins and Proteomics. 2008;1784:1873-98. DOI: 10.1016/j.bbapap.2008.08.012

Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol. 2008;59:251-62.

Iwanaga T, Takebe K, Kato I, Karaki S-I, Kuwahara A. Cellular expression of monocarboxylate transporters (MCT) in the digestive tract of the mouse, rat, and humans, with special reference to slc5a8. Biomed Res. 2006;27:243-54. DOI: 10.2220/biomedres.27.243

Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014;121:91-119. DOI: 10.1016/B978-0-12-800100-4.00003-9

Suzuki T, Yoshida S, Hara H. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br J Nutr. 2008;100:297-305. DOI: 10.1017/S0007114508888733

Wischmeyer PE, McDonald D, Knight R. Role of the microbiome, probiotics, and “dysbiosis therapy” in critical illness. Curr Opin Crit Care. 2016;22:347-53. DOI: 10.1097/MCC.0000000000000321

Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M, et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 2007;5:2177-89. DOI: 10.1371/journal.pbio.0050244

Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469:543-7. DOI: 10.1038/nature09646

Cuesta JM, Singer M. The stress response and critical illness: A review. Crit Care Med 2012;40:3283-9. DOI: 10.1097/CCM.0b013e31826567eb

Duarte Mote J, Espinosa López RF, Sánchez Rojas G, Leaños JDS, Díaz Meza S, Lee Eng Castro VE. Síndrome de respuesta inflamatoria sistémica. Aspectos fisiopatológicos. Rev Asoc Mex Med Crit y Ter Int. 2009;24:225-33.

Pédron T, Sansonetti P. Commensals, Bacterial Pathogens and Intestinal Inflammation: An Intriguing Ménage a Trois. Cell Host Microbe. 2008;3:344-7. DOI: 10.1016/j.chom.2008.05.010

Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett. 2002;17;133-9.

O’Keefe SJ, Ou J, Delany JP, Curry S, Zoetendal E, Gaskins HR, et al. Effect of fiber supplementation on the microbiota in critically ill patients. World J Gastrointest Pathophysiol. 2011;15:138-45. DOI: 10.4291/wjgp.v2.i6.138

Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM, et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med. 1999;27:1230-51.

Shimizu K, Ogura H, Asahara T, Nomoto K, Morotomi M, Nakahori Y, et al. Gastrointestinal dysmotility is associated with altered gut flora and septic mortality in patients with severe systemic inflammatory response syndrome: a preliminary study. Neurogastroenterol Motil. 2011;23:330-5. DOI: 10.1111/j.1365-2982.2010.01653.x

Kamath PS, Phillips SF, Zinsmeister AR. Short-chain fatty acids stimulate ileal motility in humans. Gastroenterol. 1988;95:1496-502.

Shimizu K, Ogura H, Tomono K, Tasaki O, Asahara T, Nomoto K, et al. Patterns of gram-stained fecal flora as a quick diagnostic marker in patients with severe SIRS. Dig Dis Sci. 2011;56:1782-8. DOI: 10.1007/s10620-010-1486-9

Zaborin A, Smith D, Garfield K, Quensen J, Shakhsheer B, Kade M, et al. Membership and Behavior of Ultra-Low-Diversity Pathogen Communities Present in the Gut of Humans during Prolonged Critical Illness. mBio. 2014;5:1-14. DOI: 10.1128/mBio.01361-14

Vincent J, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International Study of the Prevalence and Outcomes of Infection in Intensive Care Units. JAMA. 2009;302:2323-39. DOI: 10.1001/jama.2009.1754

Fridkin S, Baggs J, Fagan R, Magill S, Pollack L, Malpiedi P, et al. Vital signs: improving antibiotic use among hospitalized patients. MMWR Morb Mortal Wkly Rep. 2014;63:194-200.

Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, et al. Burden of Clostridium difficile Infection in the United States. N Engl J Med. 2015;372:825-34. DOI: 10.1056/NEJMoa1408913

Milbrandt EB, Kersten A, Rahim MT, Dremsizov TT, Clermont G, Cooper LM, et al. Growth of intensive care unit resource use and its estimated cost in Medicare. Crit Care Med. 2008;36:2504-10. DOI: 10.1097/CCM.0b013e318183ef84

Klingensmith NJ, Coopersmith CM. The Gut as the Motor of Multiple Organ Dysfunction in Critical Illness. Critical Care Clinics. 2016;32:203-12. DOI: 10.1016/j.ccc.2015.11.004

Singer M, Glynne P. Treating critical illness: The importance of first doing no harm. PLoS Med. 2005;2:497-502. DOI: 10.1371/journal.pmed.0020167

Krezalek MA, DeFazio J, Zaborina O, Zaborin A, Alverdy JC. The Shift of an Intestinal “Microbiome” to A “Pathobiome” Governs the Course and Outcome of Sepsis Following Surgical Injury. Shock. 2015;45:475-82. DOI: 10.1097/SHK.0000000000000534

Mcclave SA, Martindale RG, Vanek VW, Mccarthy M, Roberts P, Taylor B, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine ( SCCM ) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40:159-211. DOI: 10.1177/0148607109335234

Windsor AC, Kanwar S, Li AG, Barnes E, Guthrie JA, Spark JI, et al. Compared with parenteral nutrition, enteral feeding attenuates the acute phase response and improves disease severity in acute pancreatitis. Gut. 1998;42:431-5.

Shimizu K, Ogura H, Goto M, Asahara T, Nomoto K, Morotomi M, et al. Synbiotics decrease the incidence of septic complications in patients with severe SIRS: A preliminary report. Dig Dis Sci. 2009;54:1071-8. DOI: 10.1007/s10620-008-0460-2

Alberda C, Gramlich L, Meddings J, Field C, McCargar L, Kutsogiannis D, et al. Effects of probiotic therapy in critically ill patients: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2007;85:816-23.

Schneider SM, Girard-Pipau F, Filippi J, Hébuterne X, Moyse D, Hinojosa GC, et al. Effects of Saccharomyces boulardii on fecal short-chain fatty acids and microflora in patients on long-term total enteral nutrition. World J Gastroenterol. 2005;11:6165‑9.

Schneider SM, Girard-Pipau F, Anty R, van der Linde EGM, Philipsen-Geerling BJ, Knol J, et al. Effects of total enteral nutrition supplemented with a multi-fibre mix on faecal short-chain fatty acids and microbiota. Clin Nutr. 2006;25:82-90. DOI: 10.1016/j.clnu.2005.09.006

Majid HA, Emery PW, Whelan K. Faecal microbiota and short-chain fatty acids in patients receiving enteral nutrition with standard or fructo-oligosaccharides and fibre-enriched formulas. J Hum Nutr Diet. 2011;24:260-8. DOI: 10.1111/j.1365-277X.2011.01154.x

Zaman MK, Chin KF, Rai V, Majid HA. Fiber and prebiotic supplementation in enteral nutrition: A systematic review and metaanalysis. World J Gastroenterol. 2015;21:5372-81. DOI: 10.3748/wjg.v21.i17.5372

Canadian Clinical Practice Guidelines. Enteral Nutrition (Other): Probiotics. 2015.

Chung WSF, Walker AW, Louis P, Parkhill J, Vermeiren J, Bosscher D, et al. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol. 2016;14:3. DOI: 10.1186/s12915-015-0224-3

Descargas

Publicado

2017-10-19

Cómo citar

Agudelo Ochoa, G. M., Giraldo Giraldo, N. A., Barrera Causil, C. J., & Valdés Duque, B. E. (2017). Microbiota intestinal y ácidos grasos de cadena corta en pacientes críticos. Perspectivas En Nutrición Humana, 18(2), 205–222. https://doi.org/10.17533/udea.penh.v18n2a06

Número

Sección

Artículos de Revisión