Potential Immunomodulatory and Antiviral Food Effect in The Context of COVID-19 Pandemic
DOI:
https://doi.org/10.17533/udea.penh.v23n2a06Keywords:
Antivirals, coronavirus, nutraceutical foods, immunomodulation, in vitro techniquesAbstract
Background: Up to date drug-based treatments for COVID-19 have not been approved. The most effective way to face this public health problem is prevention with adequate nutrition, hygiene, and protection measures. Food has historically been used by people to improve their nutrition and complement the treatment or prevention of diseases. The various bioactive compounds of some foods are known, which in experimental studies demonstrated their antiviral and immunomodulatory action. Objective: To identify bioactive compounds of foods or food preparations with potential immunomodulatory, immunostimulatory, and antiviral effects against coronavirus. Material and Methods: A search was carried out in Google Scholar, Scopus, and Virtual Health Library on Traditional Complementary and Integrative Medicine using the terms food, immunomodulatory, immunostimulatory, and antiviral in four successive searches. Results: 93 articles were obtained, and further evidence of antiviral and immunological effect against coronavirus was identified on nine foods: Allium sativum, Cinnamomum zeylanicum, Citrus sinensis, Zingiber officinale, Vitis vinifera, Allium cepa, Curcuma longa, Punica granatum, and Sambucus nigra. The first four of them showed activity against SARS-CoV-2. Conclusions: The immunological and antiviral effect against coronavirus of nine foods was evidenced; however, they are in silico and in vitro studies, therefore it is required further preclinical and clinical research to confirm this.
Downloads
References
World Health Organization Press Conference The World Health Organization (WHO) Has Officially Named the Disease Cau-sed by the Novel Coronavirus as COVID-19. [Citado agosto de 2021]. Disponible en: https://www.who.int/emergencies/disea-ses/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
The World Health Organization (WHO). [Citado agosto de 2021). Disponible en: https://covid19.who.int/
Lu G, Wang Q, Gao GF. Bat-to-human: Spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 2015;23(8):468-78. https://doi.org/10.1016/j.tim.2015.06.003
Yang Y, Peng F, Wang R, Guan K, Jiang T, Xu G, et al.. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun. 2020;109:102434. https://doi.org/10.1016/j.jaut.2020.102434
Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10:766-88. https://doi.org/10.1016/j.apsb.2020.02.008
Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020;12(4):372. https://doi.org/10.3390/v12040372
Elfiky AA. Natural products may interfere with SARS-CoV-2 attachment to the host cell. J Biomol Struct Dyn. 2021;39(9):3194 203. https://doi.org/10.1080/07391102.2020.176188
Sohrabi C, Alsafi Z, O’Neill N, Khan M, Kerwan A, Al-Jabir A, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020;76:71-6. https://doi.org/10.1016/j.ijsu.2020.02.034
Santos-Buelga C, González-Paramás AM, Oludemi T, Ayuda-Durán B, González-Manzano S. Plant phenolics as functional food ingredients. Adv Food Nutr Res. 2019;90:183-257. https://doi.org/10.1016/bs.afnr.2019.02.012
Candeias NR, Assoah B, Simeonov SP. Production and synthetic modifications of shikimic acid. Chem Rev. 2018;118(20):10458-550. https://doi.org/10.1021/acs.chemrev.8b00350
Batiha GE, Beshbishy AM, Wasef LG. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients. 2020;12(3):1-21. https://doi.org/10.3390/nu12030872
Bae CH, Kwak DS, Ye SB, Song SY, Kim YD. Diallyl disulfide induces MUC5B expression via ERK2 in human airway epithe-lial cells. Phytother Res. 2012;26(2):197-203. https://doi.org/10.1002/ptr.3531
Sharma N. Efficacy of garlic and onion against virus. Int J Res Phamaceutical Sci. 2019;10(4):3578-86. https://doi.org/10.26452/ijrps.v10i4.1738
Dwivedi VP, Bhattacharya D, Singh M, Bhaskar A, Kumar S, Sobia P, et al. Allicin enhances antimicrobial ac- tivity of macrophages during Mycobacterium tuberculosis infection. J Ethnopharmacol. 2018;243:1116-34. https://doi.org/10.1016/j.jep.2018.12.008
Chandrashekara PM, Venkatesh YP. Immunostimulatory properties of fructans derived from raw garlic (Allium sativum L.). Bioact Carbohydrates Diet Fibre 2016;8(2):65-70. https://doi.org/10.1016/j.bcdf.2016.11.003
Clement F, Pramod SN, Venkatesh YP. Identity of the immunomodulatory proteins from garlic (Allium sativum) with the major garlic lectins or agglutinins. Int Immunopharmacol. 2010;10(3):316-24. https://doi.org/10.1016/j.intimp.2009.12.002
Guillamón E. Effect of phytochemical compounds of the genus Allium on the immune system and the inflammatory response. Ars Pharm. 2018;59(3):185-196. https://doi.org/10.30827/ars.v59i3.7479
Weber ND, Andersen D, North JA, Murray BK, Lawson LI, Hughes BG. In vitro virucidal effects of Allium sativum (Garlic) extract and compounds. Planta Med. 1991;58(5):417-23. https://doi.org/10.1055/s-2006-961504
Chavan RD, Shinde P, Girkar K, Madage R, Chowdhary A. Assessment of anti-influenza activity and hema- gglu¬tination inhibition of plumbago indica and Allium sativum Extracts. Pharmacognosy Res. 2016;8(2):105-11. https://doi.org/10.4103/0974-8490.172562
Shojai TM, Ghalyanchi A, Karimi V, Barin A, Sadri N. The effect of Allium sativum (Garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J Phytomed. 2016;6(4):458-67. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967842/pdf/AJP-6-458.pdf
Thuy BTP, My TTA, Hai NTT, Hieu LT, Hoa TT, Phuong TH, et al. Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS omega. 2020; 5(14):8312-20. https://doi.org/10.1021/acsomega.0c00772
López MT. El ajo propiedades farmacológicas e indicaciones terapéuticas. Offarm. 2007;26(1):79-81. Disponible en: https://www.elsevier.es/es-revista-offarm-4-pdf-13097334
Fredotović Ž, Šprung M, Soldo B, Ljubenkov I, Budić-Leto I, Bilušić T, et al. Chemical composition and biological activi-ty of Allium cepa L. and Allium × cornutum (Clementi ex Visiani 1842) methanolic extracts. Molecules. 2017;22(3):448. https://doi.org/10.3390/molecules22030448
Hanieh H, Narabara K, Piao M, Gerile C, Abe A, Kondo Y. Modulatory effects of two levels of dietary Alliums on immune response and certain immunological variables, following immunization, in White Leghorn chickens. Anim Sci J. 2010;81(6): 673-80. https://doi.org/10.1111/j.1740-0929.2010.00798.x
Elberry AA, Mufti S, Al-Maghrabi J, Abdel Sattar E, Ghareib SA, Mosli HA, et al. Immunomodulatory effect of red onion (Allium cepa Linn) scale extract on experimentally induced atypical prostatic hyperplasia in Wistar rats. Mediators Inflamm. 2014; 2014:640746. https://doi.org/10.1155/2014/640746
Oliveira TT, Campos KM, Cerqueira-Lima AT, et al. Potential therapeutic effect of Allium cepa L. and quercetin in a murine model of Blomia tropicalis induced asthma. Daru. 2015;23(1):18. https://doi.org/10.1186/s40199-015-0098-5
Kuttan G. Immunomodulatory effect of some naturally occuring sulphur-containing compounds. J Ethnopharmacol. 2000; 72(1-2),93-9. https://doi.org/10.1016/S0378-8741(00)00211-7
Kumar VP, Prashanth KVH, Venkatesh YP. Structural analyses and immunomodulatory properties of fructo-oligosaccharides from onion (Allium cepa). Carbohydr Polym. 2015;117:115-22. https://doi.org/10.1016/j.carbpol.2014.09.039
Kumar VP, Venkatesh YP. Alleviation of cyclophosphamide-induced immunosuppression in Wistar rats by onion lectin (Allium cepa agglutinin). J. Ethnopharmacol. 2016;186:280-8. https://doi.org/10.1016/j.jep.2016.04.006
Prasanna VK, Venkatesh YP. Characterization of onion lectin (Allium cepa agglutinin) as an immunomodulatory protein indu-cing Th1-type immune response in vitro. Int Immunopharmacol. 2015;26(2):1-10. https://doi.org/10.1016/j.intimp.2015.04.009
Batiha G, Beshbishy A, Mulla Z, Ikram M, El-Hack, M, Taha AE. The pharmacological activity, biochemical pro-perties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. foods. 2020;9(3):374. https://doi.org/10.3390/foods9030374
Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol. 2004;78(20):11334-9. https://doi.org/10.1128/JVI.78.20.11334-11339.2004
Nguyen TTH, Woo H-J, Kang H-K, Nguyen VD, Kim Y-M, Kim D-W, et al. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett. 2012;34(5):831-8. https://doi.org/10.1007/s10529-011-0845-8
Kumar S, Kumari R, Mishra S. Pharmacological properties and their medicinal uses of Cinnamomum: a review. J Pharm Pharmacol. 2019;71(12):1735-61. https://doi.org/10.1111/jphp.13173
Cao H, Urban J, Anderson R. Cinnamon polyphenol extract affects immune responses by regulating anti- and proinflammatory and glucose transporter gene expression in mouse macrophages. J Nutr. 2008;138(5):833-40. https://doi.org/10.1093/jn/138.5.833
Hagenlocher Y, Hösel A, Bischoff S, Lorentz A. Cinnamon extract reduces symptoms, inflammatory mediators and mast cell markers in murine IL-10(-/-) colitis. J Nutr Biochem. 2016;30:85-92. https://doi.org/10.1016/j.jnutbio.2015.11.015
Beom-Joon L, Youn-Jung K, Dong-Hyung C, Nak-Won S, Hee K. Immunomodulatory effect of water extract of cinnamon on anti-CD3-induced cytokine responses and p38, JNK, ERK1/2, and STAT4 activation. Immunopharmacol Immunotoxicol. 2011;33(4):714-22. https://doi.org/10.3109/08923973.2011.564185
Orihara Y, Hamamoto H, Kasuga H, Shimada T, Kawaguchi Y, Sekimizu K. A silkworm-baculovirus model for assessing the therapeutic effects of antiviral compounds: Characterization and application to the isolation of antivirals from traditional medicines. J Gen Virol. 2008;89(1):188-94. https://doi.org/10.1099/vir.0.83208-0
Liu L, Wei F, Qu Z, Wang S, Chen G, Gao H, et al. The antiadenovirus activities of Cinnamaldehyde in vitro. Science. 2009;40(11):669-74. https://doi.org/10.1309/LMF0U47XNDKBZTRQ
Connell BJ, Chang S-Y, Prakash E, Yousfi R, Mohan V, Posch W, et al. A cinnamon-derived procyanidin compound displays anti-HIV-1 activity by blocking heparan sulfate- and co-receptor- binding sites on gp120 and reverses t cell exhaustion via impeding Tim-3 and PD-1 upregulation. PLoS One. 2016;11(10):e0165386. https://doi.org/10.1371/journal.pone.0165386
Ademosun AO, Oboh G. Anticholinesterase and antioxidative properties of water-extractable phytochemicals from some citrus peels. J Basic Clin Physiol Pharmacol. 2014;25(2):199-204. https://doi.org/10.1515/jbcpp-2013-0027
Cheng L, Zheng W, Li M, Huang J , Bao S, Xu Q , et al. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2. Preprints. 2020. https://www.preprints.org/manuscript/202002.0313/v1
Cardile V, Frasca G, Rizza L, Rapisarda P, Bonina F. Antiinflammatory effects of a red orange extract in human keratinocytes treated with interferon-gamma and histamine. Phytother Res. 2010;24(3):414-8. https://doi.org/10.1002/ptr.2973
Coelho RC, Hermsdorff HH, Bressan J. Anti-inflammatory properties of orange juice: Possible favorable molecular and meta-bolic effects. Plant Foods Hum Nutr. 2013;68(1):1-10. https://doi.org/10.1007/s11130-013-0343-3
Ulasli M, Gurses SA, Bayraktar R, Yumrutas O, Oztuzco S, Igci M, et al. The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol Biol Rep. 2014;41(3):1703-11. https://doi.org/10.1007/s11033-014-3019-7
Clapé O, Alfonso A. Avances en la caracterización farmacotoxicológica de la planta medicinal Curcuma longa Linn. Medisan. 2012;16(1):97-114. Disponible en: http://scielo.sld.cu/pdf/san/v16n1/san13112.pdf
García LL, Olaya JH, Sierra JI, Padilla L. Actividad biológica de tres Curcuminoides de Curcuma longa L. (Cúrcuma) cultivada en el Quindío-Colombia. Rev Cubana Plant Med. 2017;22(1). Disponible en: http://scielo.sld.cu/pdf/pla/v22n1/pla07117.pdf
Dosoky NS, Setzer WN. Chemical composition and biological activities of essential oils of curcuma species. Nutrients. 2018;10(9):1196. https://doi.org/10.3390/nu10091196
Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013;15(1):195-218. https://doi.org/10.1208/s12248-012-9432-8
Sornpet B, Potha T, Tragoolpua Y, Pringproa K. Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. Asian Pac J Trop Med. 2017;10(9):871-6. https://doi.org/10.1016/j.apjtm.2017.08.010
Han S, Xu J, Guo X, Huang M. Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production. Clin Exp Pharmacol Physiol. 2018;45(1):84-93. https://doi.org/10.1111/1440-1681.12848
Catanzaro M, Corsini E, Rosini M, Racchi M, Lanni C. Immunomodulators inspired by nature: A review on curcumin and echinacea. molecules. 2018;23(11):2778. https://doi.org/10.3390/molecules23112778
Yue GG, Chan BC, Hon PM, et al. Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa. Food Chem Toxicol. 2010;48(8-9):2011-20. https://doi.org/10.1016/j.fct.2010.04.039
Dutta K, Ghosh D, Basu A. Curcumin protects neuronal cells from Japanese encephalitis virus-mediated cell death and also inhibits infective viral particle formation by dysregulation of ubiquitin-proteasome system. J Neuroimmune Pharmacol. 2009;4(3):328-37. https://doi.org/10.1007/s11481-009-9158-2
Kim K, Kim KH, Kim HY, Cho HK, Sakamoto N, Cheong J. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway. FEBS Lett. 2010;584(4):707-12. https://doi.org/10.1016/j.febslet.2009.12.019
Wei ZQ, Zhang YH, Ke CZ, et al. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation. World Journal of Gastroenterology. 2017;23(34):6252. https://doi.org/10.3748/wjg.v23.i34.6252
Chen DY, Shien JH, Tiley L, Chiou SS, Wang SY, Chang TJ, et al. Curcumin inhibits influenza virus infection and haemagglu-tination activity. Food Chemistry. 2010;119(4):1346-51. https://doi.org/10.1016/j.foodchem.2009.09.011
Chen L, Hu C, Hood M, Zhang X, Zhang L, Kan J, et al. A novel combination of vitamin C, curcumin and glycyrrhizic acid potentially regulates immune and inflammatory response associated with coronavirus infections: A perspective from system biology analysis. nutrients. 2020;12(4):1193. https://doi.org/10.3390/nu12041193
Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, et al. Specific plant terpenoids and lignoids possess po- tent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem. 2007;50(17):4087-95. https://doi.org/10.1021/jm070295s
Shah BH, Nawaz Z, Pertani SA. Efecto inhibidor de la curcumina, una especia alimenticia de la cúrcuma, so-bre la agregación plaquetaria mediada por el factor activador de plaquetas y el ácido araquidónico a través de la inhibición de la formación de tromboxano y la señalización de Ca2 +. Biochem Pharmacol. 1999;58:1167-72. https://doi.org/10.1016/S0006-2952(99)00206-3
Shaygannia E, Bahmani M, Zamanzad B, Rafieian-Kopaei M. A review study on Punica granatum L. J Evid Based Comple-mentary Altern Med. 2016;21(3):221-7. https://doi.org/10.1177/2156587215598039
Wu S, Tian L. Diverse phytochemicals and bioactivities in the ancient fruit and modern functional food pomegranate (Punica granatum). Molecules. 2017;22(10):1606. https://doi.org/10.3390/molecules22101606
Shukla M, Gupta K, Rasheed Z, Khan KA, Haqqi TM. Consumption of hydrolyzable tannins-rich pomegra¬na- te extract suppresses inflammation and joint damage in rheumatoid arthritis. Nutrition. 2008;24(7-8):733-43. https://doi.org/10.1016/j.nut.2008.03.013
Shuang G, Yiying Z, Xin Y, Wanlu L, Bing H, Jing L. Ellagic acid protects against LPS-induced acute lung injury through inhibition of nuclear factor kappa B, proinflammatory cytokines and enhancement of interleukin-10. Food Agric Immunol. 2017;28(6):1347-61. https://doi.org/10.1080/09540105.2017.1339670
Rahimi VB, Ghadiri M, Ramezani M, Askari VR. Antiinflammatory and anti-cancer activities of pomegranate and its constituent, ellagic acid: Evidence from cellular, animal, and clinical studies. Phytother Res. 2020;34(4):685-720. https://doi.org/10.1002/ptr.6565
Gavlighi HA, Tabarsa M, You S, Surayot U, Ghaderi-Ghahfarokhi M. Extraction, characterization and immunomodulatory property of pectic polysaccharide from pomegranate peels: Enzymatic vs conventional approach. Int J Biol Macromol. 2018;116:698-706. https://doi.org/10.1016/j.ijbiomac.2018.05.083
Wu Y, Zhu CP, Zhang Y, Li Y, Sun JR. Immunomodulatory and antioxidant effects of pomegranate peel polysaccharides on immunosuppressed mice. Int J Biol Macromol. 2019;137:504-11. https://doi.org/10.1016/j.ijbiomac.2019.06.139
Ciavarella C, Motta I, Valente S, Pasquinelli G. Pharmacological (or synthetic) and nutritional agonists of PPAR-as can- didates for cytokine storm modulation in COVID-19 disease. Molecules. 2020;25(9):E2076. https://doi.org/10.3390/molecu- les25092076
Moraldi MT, Karimi A, Shahrani M, Hashemi L, Ghaffari-Goosheh MS. Anti-influenza virus activity and phenolic content of pomegranate (Punica granatum L.) peel extract and fractions. Avivenna J Med. Biotechnol. 2019;11(4):285-91. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925405
Moradi MT, Karimi A, Rafieian-Kopaei M, Rabiei-Faradonbeh M, Momtaz H. Pomegranate peel extract inhibits internali-zation and replication of the influenza virus: An in vitro study. Avicenna J Phytomed. 2020;10(2):143-51. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7103433/
Sundararajan A, Ganapathy R, Huan L, Dunlap JR, Webby RJ. Kotwa GJ, et al. Influenza virus variation in susceptibi-lity to inactivation by pomegranate polyphenols is determined by envelope glycoproteins. Antiviral Res. 2010;88(1):1-9. https://doi.org/10.1016/j.antiviral.2010.06.014
Haidari M, Ali M, Ward Casscells S 3rd, Madjid M. Pomegranate (Punica granatum) purified polyphenol ex¬tract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomedicine. 2009;16(12):1127-36. https://doi.org/10.1016/j. phymed.2009.06.002
Veberic R, Jakopic J, Stampar F, Schmitzer V. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, antho-cyanins and selected polyphenols. Food Chemistry. 2009;114(2):511-5. https://doi.org/10.1016/j.foodchem.2008.09.080
Zielińska-Wasielica J , Olejnik A, Kowalska K, Olkowicz M, Dembczyński R. Elderberry (Sambucus nigra L.) Fruit extract alleviates oxidative stress, insulin resistance, and inflammation in hypertrophied 3T3-L1 adipocytes and activated RAW 264.7 Macrophages. Foods. 2019;8(8):326. https://doi.org/10.3390/foods8080326
Thanh G, Wangensteen H, Barsett H. Elderberry and elderflower extracts, phenolic compounds, and metaboli¬tes and their effect on complement, RAW 264.7 macrophages and dendritic cells. Int. J. Mol. Sci. 2017;18(3):584. https://doi.org/10.3390/ ijms18030584
Torabian G, Valtchev P, Adil Q, Dehghan F. Anti-influenza activity of elderberry (Sambucus nigra). J Funct Foods. 2019;54(1):353-60. https://doi.org/10.1016/j.jff.2019.01.031
Badescu M, Badulescu O, Badescu L, Ciocoiu M. Effects of Sambucus nigra and Aronia melanocarpa extracts on immune system disorders within diabetes mellitus. Pharm Biol. 2015;53(4):533-9. https://doi.org/10.3109/13880209.2014.931441
Karimi S, Mohammadi A, Dadras H. The effect of Echinacea purpurea and Sambucus nigra L. on H9N2 avian influenza virus in infected chicken embryo. Veterinarski Arhiv. 2014;84(2):153-65. Disponible en: http://intranet.vef.hr/vetarhiv/pa- pers/2014-84-2-5.pdf
Roschek B, Fink R, McMichael M, Li D, Alberte R. Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phyto-chemistry. 2009;70(10):1255-61. https://doi.org/10.1016/j.phytochem.2009.06.003
Chen C, Zuckerman DM, Brantley S, Sharpe S, Childress K, Hoiczyk E, et al. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Vet Res. 2014;10(24). https://doi.org/10.1186/1746-6148-10-24
Weng JR, Lin CS, Lai HC, Lin YP, Wang CY, Tsai YC, et al. Antiviral activity of Sambucus Formosana Nakai etha-nol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res. 2019;273:197767. https://doi.org/10.1016/j.virusres.2019.197767
Ali K, Maltés F, Choi Y, Verpoorte R. Metabolic constituents of grapevine metabólicos de la vid y productos derivados de la uva. Fhytochem Rev. 2010;9(3):357-8. https://doi.org/10.1007/s11101-009-9158-0
Riviere C, Pawlus AD, Merillon JM. Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat Prod Rep. 2012;29(11):1317-33. https://doi.org/10.1039/c2np20049j
Kim SJ, Lee JW, Eun YG, Lee KH, Yeo SG, Kim SW. Pretreatment with a grape seed proanthocyanidin extract downregu-lates proinflammatory cytokine expression in airway epithelial cells infected with respiratory syncytial virus. Mol Med Rep. 2019;19(4):3330-6. https://doi.org/10.3892/mmr.2019.9967
Campagna M, Rivas C. Antiviral activity of resveratrol. Biochem Soc Trans. 2010;38:50-3. https://doi.org/10.1042/BST0380050
Zhao X, Tong W, Song X, et al. Antiviral effect of resveratrol in piglets infected with virulent pseudorabies virus. Viruses. 2018;10(9):457-67. https://doi.org/10.3390/v10090457
Lin S-C, Ho C-T, Chuo W-H, Li S, Wang TT, Lin C-C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis. 2017;17(1):144. https://doi.org/10.1186/s12879-017-2253-8
Nair N, Mahajan S, Chawda R, Kandaswami C, Shanahan T, Schwartz S, et al. Grape seed extract activates Th1cells in vitro Clin Diagn Lab Immunol. 2002;9(2):470-6. https://doi.org/10.1128/CDLI.9.2.470-476.2002
Chen WC, Tseng CK, Chen BH, Lin CK, Lee JC. Grape Seed extract attenuates hepatitis C virus replication and virus-induced inflammation. Front Pharmacol. 2016;7:490. https://doi.org/10.3389/fphar.2016.00490
Tong H, Song X, Sun X, Sun G, Du F. Immunomodulatory and antitumor activities of grape seed proanthocyanidins . J Agric Food Chem. 2011;59(21):11543-7. https://doi.org/10.1021/jf203170k
Ezzat SM, Ezzat MI, Okba MM, Menze ET, Abdel-Naim AB. The hidden mechanism beyond ginger (Zingi¬ber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity. J Ethnopharmacol. 2018;214:113-23. https://doi.org/10.1016/j. jep.2017.12.019
Feng T, Su J, Ding ZH, et al. Chemical constituents and their bioactivities of “Tongling White Ginger” (Zingiber officinale). J Agric Food Chem. 2011;59(21):11690-5. https://doi.org/10.1021/jf202544w
Fahmi A, Hassanen N, Abdur-Rahman M, Shams-Eldin E. Phytochemicals, antioxidant activity and hepatopro¬tective effect of ginger (Zingiber officinale) on diethylnitrosamine toxicity in rats. Biomarkers. 2019;24(5):436-47. https://doi.org/10.1080/1 354750X.2019.1606280
Kawamoto Y, Ueno Y, Nakahashi E, et al. Prevention of allergic rhinitis by ginger and the molecular basis of immunosuppres-sion by 6-gingerol through T cell inactivation. J Nutr Biochem. 2016;27:112-22. https://doi.org/10.1016/j.jnutbio.2015.08.025
Chang JS, Wang KC, Yeh CF, Shieh DE, Chiang LC. Fresh ginger (Zingiber officinale) has anti-viral activity aga-inst human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2013;145(1):146-51. https://doi.org/10.1016/j.jep.2012.10.043
Jayasundar R, Ghatak S, Makhdoomi MA, Luthra K, Singh A, Velpandian T. Challenges in integrating component level tech-nology and system level information from Ayurveda: Insights from NMR phytometabolomics and anti-HIV potential of select Ayurvedic medicinal plants. J Ayurveda Integr Med. 2019;10(2):94-101. https://doi.org/10.1016/j.jaim.2017.06.002
Sivaraman D, Pradeep PS. Scope of phytotherapeutics in targeting ACE2 mediated Host-Viral Interface of SARS-CoV2 that causes COVID-19. Chem Rxiv. 2020. https://doi.org/10.26434/chemrxiv.12089730
Mozaffari-Khosravi H, Naderi Z, Dehghan A, Nadjarzadeh A, Fallah Huseini H. Effect of ginger supplementation on proin-flammatory cytokines in older patients with osteoarthritis: Outcomes of a randomized controlled clinical trial. J Nutr Gerontol Geriatr. 2016;35(3):209-18. https://doi.org/10.1080/21551197.2016.1206762
Vahdat-Shariatpanahi Z, Mokhtari M, Taleban FA, Alavi F, Surmaghi M, Mehrabi Y, et al. Effect of enteral feeding with ginger extract in acute respiratory distress syndrome. J Crit Care. 2013;28(2):217. https://doi.org/10.1016/j.jcrc.2012.04.017
Downloads
Published
How to Cite
Issue
Section
License
Derechos de autor 2024 Universidad de Antioquia