Methodology for the construction and validation of an index of life conditions for young adolescents

Authors

  • Hugo Grisales Romero University of Antioquia
  • Maria P. Arbeláez

DOI:

https://doi.org/10.17533/udea.rfnsp.877

Keywords:

young adolescents index, multilevel analysis, life conditions, socioeconomic level, Colombia

Abstract

Objective: to provide information about life conditions among young adolescents who are 15-19 years of age, and who live in the urban area of Medellin, Colombia based on different qualification of live domains and indicators analyzed through a hierarchical model. Materials and methods: a cross-sectional study was conducted in a representative random sample of 1.066 youths who were surveyed with a questionnaire validated by appearance and contents. The questionnaire contained conceptual domains about youth’s life conditions. After the data collection process the optimal scaling technique on data for qualitative variables in order to select principal component was performed. The first principal component was chosen as the Youth’s Life Conditions Index (YLCI). The relevancy of the requirements included in the procedure was previously checked. The index we standardized so as their results would vary according to a scale o 0 to 100 points. Once the YLCI was validated, its results were described in a general way according to age, sex, socioeconomic
level, and residence area. A multilevel model was built with the individual and contextual variables that better explain the applied index. Results and conclusions: the LCI showed an average of 57.7, which was higher in women; the average LCI increased according to higher socioeconomic level and it diminished when age was increased in one year. The lowest LCI was obtained from youths living in northeastern and northwestern areas of the city. According to the multilevel analysis pattern, the unemployment rate as a contextual
variable in the neighborhood was important in decreasing the LCI. The results suggest that it is necessary to perform a monitoring process of inequalities in the life conditions of young adolescents, especially in those areas of the city with very depressed social-economic levels
|Abstract
= 220 veces | PDF (ESPAÑOL (ESPAÑA))
= 33 veces|

Downloads

Download data is not yet available.

Author Biographies

Hugo Grisales Romero, University of Antioquia

PhD in epidemiology; tenured professor of the National Faculty of Public Health, University of Antioquia

Maria P. Arbeláez

PhD in epidemiology; Professor of the National Faculty of Public Health, University of Antioquia

References

(1). OPS/OMS. [Internet] [Consulta: 4 de marzo de 2005]. Demo-grafía. Disponible en: http://www.col.ops-oms.org/juventudes/Situacion/2000/DEMOGRAFIA/DEMOGRAFIA.HTML.

(2). OPS. Plan de acción de desarrollo y salud de los adolescentes y jóvenes en las Américas 1998-2001. Washington: OPS; 1998.

(3). Hernández O. Estadística elemental para ciencias sociales. San José de Costa Rica: Universidad de Costa Rica; 2004.

(4). Colombia. Presidencia de la República. Encuentro Nacional. [Internet] [Consulta: 4 de marzo de 2005]. Disponible en: http://www.colombiajoven.gov.co/documentos/generales/ENCUES-TANACIONAL.pdf.

(5). Medellín. Alcaldía de Medellín, Secretaría de Salud. Redescu-brirte: enhebrando saberes en salud y juventud I. En: Proyecto Red de Jóvenes para la prevención de la farmacodependencia, la sexualidad insegura y la violencia. Etapa II. Módulo I. Medellín: Alcaldía de Medellín; 2005. p. 52.

(6). Fundación W. K. Kellogg. Familia y adolescencia: indicadores de salud: manual de aplicación de instrumentos e instrumento abreviado. Washington D. C: OPS; 1999. p. 50-56.

(7). Baer L, Jacobs DG, Meszler-Reizes J, Blais M, Fava M, Kessler R, et al. Development of a brief screening instrument: The HANDS. Psychother Psychosom 2000; 69:35-41. DOI: https://doi.org/10.1159/000012364

(8). Badler C, Alsina S, Puigsubirá C, Vitelleschi M, Arnesi N. “Da-tos perdidos en encuestas de hogares, un aporte metodológico”. Primera Reunión sobre Estadística Pública del Instituto Intera-mericano de Estadística. Encuestas a Hogares: Reformulación de la Encuesta Permanente de Hogares de Argentina. [Internet] [Consulta: 23 de Octubre de 2006]. Disponible en: http://www.indec.mecon.ar/servivio/iasi_obj.htm.

(9). Young FW. “Methods for Describing Ordinal Data with Cardinal Models”. J Math Psychology 1981; 12: 416-436. DOI: https://doi.org/10.1016/0022-2496(75)90002-4

(10). Young FW, Takane Y ,De Leeuw J. (1978), “The principal Com-Young FW, Takane Y ,De Leeuw J. (1978), “The principal Com-ponents of Mixed Measurement Level Multivariate Data: An Al-ternating Least Squares Method with Optimal Scaling Features”. Psychometrika 1978; 43: 279-281. DOI: https://doi.org/10.1007/BF02293871

(11). Hayashi C. On the quantification of qualitative data from the mathematic-statistical point of view, Annals of the Institute of Statistical. Mathematics 1950; 2 (1): 35-47. DOI: https://doi.org/10.1007/BF02919500

(12). Takane Y, Young FW, Leeuw J. Nonmetric Common Factor Analysis: an Alternating Least Squares Method with Optimal Scaling. Behaviormetrika. 1979; 16(6): 45–56. DOI: https://doi.org/10.2333/bhmk.6.45

(13). Bradley RA, Katty SK, Coons IJ. Optimal scaling for ordered categories, Psychometrika 1962; 27: 355-374. DOI: https://doi.org/10.1007/BF02289644

(14). Castaño E, Correa C, Salazar B. Reestimación del indicador de calidad de vida para la ciudad de Medellín. Medellín: Departa-mento Administrativo de Planeación Metropolitana de Medellín; Universidad de Antioquia; 2002.

(15). Dillon WR, Goldstein M. Multivariate analysis. Methods and applications. New York: Wiley; 1984. (Series in Probability and Statistics).

(16). Dunteman GH. Principal components analysis. London, New Delhi: Sage University Papers; 1989. (Series Newbury Park: SAGE, Quantitative applications in the social sciences).

(17). Flury B. Common principal components and related multivariate models. New York: Wiley; 1988. (Series in Probability and Mathematical Statistics, John Wiley & Sons).

(18). Jackson JE. A user’s guide to principal components. New York: Wiley; 1991. (Series in probability and mathematical statistics. Applied probability and statistics). DOI: https://doi.org/10.1002/0471725331

(19). Mulaik S A. The Foundations of Factor Analysis. New York: McGraw-Hill Book Co; 1972. (Series in Psychology).

(20). Castaño E, Moreno H. Selección y cuantificación de variables del sistema de selección de beneficiarios SISBEN. Planeación y Desarrollo 1994; 25: 259-283.

(21). Castaño E. Cuantificación de variables cualitativas y análisis de componentes principales. En: Memoria Simposio de Estadística: Análisis Multivariado de Datos, 1994; Bogotá; 1994.

(22). Kuhfeld WF, Sarle WS, Young FW. “Methods of Generating Model Estimates in the PRINQUAL Macro,” SAS Users Group International Conference Proceedings: SUGI 10, Cary. NC: SAS Institute Inc. 1985: 962 -971.

(23). Tenenhaus M, Vachette JL. “PRINQUAL: Un Programme d’Analyse en Composantes Principales d’un Ensemble de Varia-bles Nominales ou Numeriques,” Les Cahiers de Recherche #68. France : CESA ; 1977

(24). Norman, G. Streitner D. Bioestadística. Madrid: Mosby/Doyma libros. 1996. p. 139.

(25). ONU. Diez años de desarrollo humano en Colombia. Programa Naciones Unidas para el Desarrollo. Bogota: Departamento Nacio-nal de Planeación, Agencia Colombiana de Cooperación Interna-cional, Programa Nacional de Desarrollo Humano; 2003; p. 114.

(26). Akaike, H. “A New Look at the Statistical Identification Model,” IEEE Transactions on Automatic Control, 1974; 19:716 -723. DOI: https://doi.org/10.1109/TAC.1974.1100705

(27). Sánchez E, Ocaña R. “Los modelos multinivel o la importancia de la jerarquía”. Gaceta Sanitaria 1999; 13 (5): 391-398. DOI: https://doi.org/10.1016/S0213-9111(99)71390-7

(28). Amartya S. The Standard of Living. United Kingdom: Cambrid-ge University Press; 1987

(29). Sarmiento A, Ramírez C, Acosta R, Alonso C. El Índice de Con-diciones de Vida: una propuesta para la distribución. Bogotá: DNP, 1998.

(30). Medellín. Alcaldía de Medellín, Departamento Administrativo de Planeación, Subdirección de Metroinformación. Encuesta de Calidad de Vida en Medellín 2002- 2003. Medellín: La Alcal-día; 2003.

(31). Castaño E, Correa C, Salazar B. Reestimación del indicador de calidad de vida para la ciudad de Medellín. Departamento Administrativo de Planeación Metropolitana de Medellín. Medellín, septiembre de 2005. Medellín: Universidad de Antioquia, Planeación Metropolitana.

(32). Banco Mundial. Informe sobre el desarrollo mundial. El desarro-llo y la próxima generación. Panorama general. Washington D.C: Banco Mundial; 2007. p. 7.

(33). Castaño E, Correa C. Op. cit., p. 137.

Published

2009-03-02

How to Cite

1.
Grisales Romero H, Arbeláez MP. Methodology for the construction and validation of an index of life conditions for young adolescents. Rev. Fac. Nac. Salud Pública [Internet]. 2009 Mar. 2 [cited 2025 Jan. 30];26(2):1-18. Available from: https://revistas.udea.edu.co/index.php/fnsp/article/view/877

Issue

Section

Metodologías

Most read articles by the same author(s)