Efecto de una dieta alta en grasa que contiene piñón de pino sobre el peso corporal y de órganos en ratas
DOI:
https://doi.org/10.17533/udea.penh.v20n1a02Palabras clave:
Ratas, peso corporal, aumento de peso, dieta alta en grasa, frutos secos indehiscentes.Resumen
Antecedentes: el piñón de pino es un fruto seco de excelentes propiedades nutricionales. Objetivo: evaluar el efecto del consumo de piñón en la ganancia de peso corporal y de órganos de ratas con dieta alta en grasas. Materiales y métodos: se alimentó a 24 ratas macho Sprague Dawley con dieta control, dieta alta en grasa, o dieta alta en grasa con 2 % de piñones, (n=8 por grupo). Luego de 28 días, los animales se pesaron, se sacrificaron y se obtuvo grasa mesentérica, retroperitoneal, inguinal y epididimal. Se extrajeron y se pesaron el hígado, los riñones y el corazón. Resultados: la ingestión alta en grasa y alta en grasa con 2 % de piñones fue semejante, menor que la de dieta control (p<0,05). Las ratas con dieta alta en grasa con 2 % de piñones mostraron mayor incremento ponderal y peso corporal final (p<0,05), y la eficiencia de las dietas
alta en grasa y alta en grasa con 2 % de piñones fue mayor que la de dieta control (p<0,05). El peso relativo de hígado, corazón, riñones y panículos adiposos fue semejante en los tres grupos. Conclusiones: el consumo de dietas altas en grasa ocasiona un mayor aumento de peso en comparación con una normograsa. La dieta alta en grasa con 2 % de piñones no afecta la ganancia ponderal, el peso relativo de órganos ni los depósitos de grasa observados con dieta alta en grasa.
Descargas
Citas
Zuleta A, Weisstaub A, Giacomino S, Dyner L, Loewe V, Del Río R, et al. An ancient crop revisited: chemical composition of Mediterranean pine nuts grown in six countries. Ital J Food Sci. 2018;30:170-83. DOI: 10.14674/IJFS-996
Bolling BW, Chen CYO, McKay DL, Blumberg JB. Tree nut phytochemicals: composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr Res Rev. 2011;24:244-75. DOI: 10.1017/S095442241100014X
Lutz M, Alvarez K, Loewe V. Chemical composition of pine nut (Pinus pinea L.) grown in three geographical macrozones in Chile. CYTA - J Food. 2016;15:284-90. DOI: 10.1080/19476337.2016.1250109
Sugano M, Ikeda I, Wakamatsu K, Oka T. Influence of Korean pine (Pinus koraiensis)-seed oil containing cis-5,cis-9,cis-12-octadecatrienoic acid on polyunsaturated fatty acid metabolism, eicosanoid production and blood pressure of rats. Br J Nutr. 1994;72:775-83. DOI: 10.1079/BJN19940079
Asset G, Staels B, Wolff RL, Baugé E, Madj Z, Fruchart JC, et al. Effects of Pinus pinaster and Pinus koraiensis seed oil supplementation on lipoprotein metabolism in the rat. Lipids. 1999;34:39-44. DOI: 10.1007/s11745-999-335-2
Ferramosca A, Savy V, Einerhand AWC, Zara V. Pinus koraiensis seed oil (PinnoThin™) supplementation reduces body weight gain and lipid concentration in liver and plasma of mice. J Anim Feed Sci. 2008;17:621-30. DOI: 10.22358/jafs/66690/2008
Park S, Lim Y, Shin S, Nim Han S. Impact of Korean pine nut oil on weight gain and immune responses in high-fat dietinduced obese mice. Nutr Res Pract. 2013;7:352-8. DOI: 10.4162/nrp.2013.7.5.352
Ros E. Nuts and novel biomarkers of cardiovascular disease. Am J Clin Nutr 2009;89:1649S-56S. DOI: 10.3945/ajcn.2009.26736R
Natoli S, McCoy P. A review of the evidence: nuts and body weight. Asia Pac J Clin Nutr. 2007;16:588-97.
Flores-Mateo G, Rojas-Rueda D, Basora J, Ros E, Salas-Salvadó J. Nut intake and adiposity: meta-analysis of clinical trials. Am J Clin Nutr. 2013;97:1346-55. DOI: 10.3945/ajcn.111.031484
Lutz M, Luna L. Nuts and body weight: an overview. J Nutr Health Sci. 2016;3:105. DOI: 10.15744/2393-9060.3.104
Ibarrola-Jurado N, Bulló M, Guasch-Ferré M, Ros E, Martínez-González MA, Corella D, et al. Cross-sectional assessment of nut consumption and obesity, metabolic syndrome and other cardiometabolic risk factors: the PREDIMED study. PLoS One. 2013;8:e57367. DOI: 10.1371/journal.pone.0057367
U.S. Food and Drug Administration. Qualified health claims: Letter of enforcement discretion – nuts and coronary heart disease (Docket No. 02P-0505). 2003. [Internet]. [Citado mayo de 2017]. Disponible en: https://www.fda.gov/Food/Labeling-Nutrition/ucm072756.htm
Wolff RL, Bayard CC. Fatty acid composition of some pine seed oils. J Am Oil Chem Soc. 1995;72:1043-6. DOI: 10.1007/BF02660719
Alasalvar C, Bolling BW. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Brit J Nutr. 2006;113(Suppl 2):S68-78. DOI: 10.1017/S0007114514003729
Home Office Animals in Science Regulation Unit. Working to reduce the use of animals in scientific research. Delivering our Commitment to Replace, Reduce and Refine the Use of Animals in Research, UK; 2014. [Internet]. [Citado abril de 2017]. Disponible en: http://www.understandinganimalresearch.org.uk/files/8314/1207/5937/working-to-reduce-the-use-of-animals-in-scientific-researchdownload-only.pdf
Chile, Ministerio de Salud. Ley 20.380, sobre protección animal. Chile; 2009.
Martínez-González M, Bes-Rastrollo. Nut consumption, weight gain and obesity: epidemiological evidence. Nutr Metab Cardiovasc Dis. 2011;21:S40-5. DOI: 10.1016/j.numecd.2010.11.005
Aune D, Keum N, Giovannucci E, Fadnes L, Boffetta P, Greenwood D, et al. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016;14:207. DOI: 10.1186/s12916-016-0730-3
Marques C, Meireles M, Norberto S, Leite J, Freitas J, Pestana D, et al. High-fat diet-induced obesity rat model: a comparison between Wistar and Sprague-Dawley rat. Adipocyte. 2016;5:11-21. DOI: 10.1080/21623945.2015.1061723
Amr A, Abeer E. Hypolipidemic and hypocholesterolemic effect of pine nuts in rats fed high fat, cholesterol-diet. World Appl Sci J. 2011;15:1667-77.
Cassady B, Hollis J, Fulford A, Considine R, Mattes R. Mastication of almonds: effects of lipid bioaccessibility, appetite, and hormone response. Am J Clin Nutr. 2009;89:794-800. DOI: 10.3945/ajcn.2008.26669
McPherson R, Jones PH. The metabolic syndrome and type 2 diabetes: role of the adipocyte. Curr Op Lipidol. 2003;14:549‑53. DOI: 10.1097/01.mol.0000103607.38789.3b
Unger RH. Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol Metab. 2003;14:398-403. DOI: 10.1016/j.tem.2003.09.008
Brunt EM. Nonalcoholic steatohepatitis. Sem Liver Dis 2004;24:3-20. DOI: 10.1055/s-2004-823098
den Boer, Voshol PJ, Kuipers F, Havekes LM, Romijn JA. Hepatic steatosis: a mediator of the metabolic syndrome. Lessons from animal models. Arterioscl Thromb Vasc Biol. 2004;24:644-9. DOI: 10.1161/01.ATV.0000116217.57583.6e
Galgani J, Ravussin E. Energy metabolism, fuel selection and body weight regulation. Int J Obes (Lond). 2008;32(Suppl 7):S109‑19. DOI: 10.1038/ijo.2008.246
Mendes de Castro U, Souza R, Silva M, Lima W, Campagnole-Santos M, Carvalho A. Age-dependent effect of high-fructose and high-fat diets on lipid metabolism and lipid accumulation in liver and kidney of rats. Lipids Health Dis. 2013;12:136. DOI: 10.1186/1476-511X-12-136
Fernández C, Bellentani F, Fernandes G, Perobelli J, Favareto A, Nascimento A, et al. Diet-induced obesity in rats leads to a decrease in sperm motility. Reprod Biol Endocrinol. 2011;9:32-41. DOI: 10.1186/1477-7827-9-32
Pancani T, Anderson K, Brewer L, Kadish I, DeMoll C, Landfield P, et al. Effect of high-fat diet on metabolic indices, cognition, and neuronal physiology in aging F344 rats. Neurobiol Aging. 2013;34:1977-87. DOI: 10.1016/j.neurobiolaging.2013.02.019
Buettner R, Parhofer KG, Woenckhaus M, Wrede CE, Kunz-Schughart LA, Schölmerich J, et al. Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J Mol Endocrinol. 2006;36:485-501. DOI:10.1677/jme.1.01909
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Universidad de Antioquia