Alimentos con potencial efecto inmunomodulador y antiviral a propósito de la pandemia COVID-19

Autores/as

DOI:

https://doi.org/10.17533/udea.penh.v23n2a06

Palabras clave:

antivirales, coronavirus, alimentos nutracéuticos, inmunomodulación, técnicas in vitro

Resumen

Antecedentes: los tratamientos con base en medicamentos contra la COVID-19 no han sido aprobados hasta la actualidad. La forma más efectiva de enfrentar este problema de salud pública es la prevención con una adecuada alimentación, medidas de higiene y protección. Los alimentos han sido históricamente utilizados por la población para mejorar su nutrición y complementar el tratamiento o prevención de enfermedades. Se conocen los diversos compuestos bioactivos de algunos alimentos, que en estudios experimentales demostraron su acción antiviral e inmunomoduladora. Objetivo: identificar los compuestos bioactivos o preparados de alimentos con potencial efecto inmunomodulador, inmunoestimulante y antiviral contra el coronavirus. Materiales y métodos: se realizó una búsqueda en Google Scholar, Scopus y en la Biblioteca Virtual de Salud en Bases de datos de Medicina Tradicional, Complementaria e Integrativa utilizando los términos food, immunomodulatory, immunostimulatory y anti­viral en cuatro búsquedas sucesivas. Resultados: se obtuvieron 93 artículos y se identificó mayor evidencia sobre el efecto antiviral e inmunológico contra el coronavirus en nueve alimentos: Allium sativum, Cinnamomum zeylanicum, Citrus sinensis, Zingiber officinale, Vitis vinífera, Allium cepa, Curcuma longa, Punica granatum y Sambucus nigra. Los cuatro primeros mostraron actividad contra el SARS-CoV-2. Conclusiones: se evidenció el efecto inmunológico y antiviral contra el coronavirus de nueve alimentos; sin embargo, son estudios in silico e in vitro, por ello se requiere mayor investigación preclínica y clínica que lo confirmen.

|Resumen
= 5029 veces | PDF
= 1944 veces| | XML
= 116 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Huaccho-Rojas J, Universidad San Martin de Porres

Facultad de Medicina Humana, Universidad de San Martín de Porres, Centro de Investigación de Medicina Tradicional y Farmacología.

Yánac-Tellería W, Universidad Nacional Mayor de San Marcos

Sociedad Científica de San Fernando, Facultad de Medicina, Universidad Nacional Mayor de San Marcos.

Balladares A , Universidad Nacional Mayor de San Marcos

Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos.

Rodriguez CL , Universidad San Martín de Porres

Facultad de Medicina Humana, Facultad de Medicina, Universidad San Martín de Porres.

Galarza S , Universidad Nacional Mayor de San Marcos

Facultad de Medicina Humana, Facultad de Medicina, Universidad Nacional Mayor de San Marcos.

Jose Vallejos-Gamboa , Universidad Privada San Juan Bautista

Escuela Profesional de Medicina Humana, Facultad de Medicina, Universidad Privada San Juan Bautista.

José Aranda-Ventura , Instituto de Medicina Tradicional

Instituto de Medicina Tradicional, Seguridad Social de Salud (ESSALUD).

Martha Villar López , Colegio Médico del Perú

Comité de Medicina Tradicional, Alternativa y Complementaria, Colegio Médico del Perú.

Citas

World Health Organization Press Conference The World Health Organization (WHO) Has Officially Named the Disease Cau-sed by the Novel Coronavirus as COVID-19. [Citado agosto de 2021]. Disponible en: https://www.who.int/emergencies/disea-ses/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it

The World Health Organization (WHO). [Citado agosto de 2021). Disponible en: https://covid19.who.int/

Lu G, Wang Q, Gao GF. Bat-to-human: Spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 2015;23(8):468-78. https://doi.org/10.1016/j.tim.2015.06.003

Yang Y, Peng F, Wang R, Guan K, Jiang T, Xu G, et al.. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun. 2020;109:102434. https://doi.org/10.1016/j.jaut.2020.102434

Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10:766-88. https://doi.org/10.1016/j.apsb.2020.02.008

Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020;12(4):372. https://doi.org/10.3390/v12040372

Elfiky AA. Natural products may interfere with SARS-CoV-2 attachment to the host cell. J Biomol Struct Dyn. 2021;39(9):3194 203. https://doi.org/10.1080/07391102.2020.176188

Sohrabi C, Alsafi Z, O’Neill N, Khan M, Kerwan A, Al-Jabir A, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020;76:71-6. https://doi.org/10.1016/j.ijsu.2020.02.034

Santos-Buelga C, González-Paramás AM, Oludemi T, Ayuda-Durán B, González-Manzano S. Plant phenolics as functional food ingredients. Adv Food Nutr Res. 2019;90:183-257. https://doi.org/10.1016/bs.afnr.2019.02.012

Candeias NR, Assoah B, Simeonov SP. Production and synthetic modifications of shikimic acid. Chem Rev. 2018;118(20):10458-550. https://doi.org/10.1021/acs.chemrev.8b00350

Batiha GE, Beshbishy AM, Wasef LG. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients. 2020;12(3):1-21. https://doi.org/10.3390/nu12030872

Bae CH, Kwak DS, Ye SB, Song SY, Kim YD. Diallyl disulfide induces MUC5B expression via ERK2 in human airway epithe-lial cells. Phytother Res. 2012;26(2):197-203. https://doi.org/10.1002/ptr.3531

Sharma N. Efficacy of garlic and onion against virus. Int J Res Phamaceutical Sci. 2019;10(4):3578-86. https://doi.org/10.26452/ijrps.v10i4.1738

Dwivedi VP, Bhattacharya D, Singh M, Bhaskar A, Kumar S, Sobia P, et al. Allicin enhances antimicrobial ac- tivity of macrophages during Mycobacterium tuberculosis infection. J Ethnopharmacol. 2018;243:1116-34. https://doi.org/10.1016/j.jep.2018.12.008

Chandrashekara PM, Venkatesh YP. Immunostimulatory properties of fructans derived from raw garlic (Allium sativum L.). Bioact Carbohydrates Diet Fibre 2016;8(2):65-70. https://doi.org/10.1016/j.bcdf.2016.11.003

Clement F, Pramod SN, Venkatesh YP. Identity of the immunomodulatory proteins from garlic (Allium sativum) with the major garlic lectins or agglutinins. Int Immunopharmacol. 2010;10(3):316-24. https://doi.org/10.1016/j.intimp.2009.12.002

Guillamón E. Effect of phytochemical compounds of the genus Allium on the immune system and the inflammatory response. Ars Pharm. 2018;59(3):185-196. https://doi.org/10.30827/ars.v59i3.7479

Weber ND, Andersen D, North JA, Murray BK, Lawson LI, Hughes BG. In vitro virucidal effects of Allium sativum (Garlic) extract and compounds. Planta Med. 1991;58(5):417-23. https://doi.org/10.1055/s-2006-961504

Chavan RD, Shinde P, Girkar K, Madage R, Chowdhary A. Assessment of anti-influenza activity and hema- gglu¬tination inhibition of plumbago indica and Allium sativum Extracts. Pharmacognosy Res. 2016;8(2):105-11. https://doi.org/10.4103/0974-8490.172562

Shojai TM, Ghalyanchi A, Karimi V, Barin A, Sadri N. The effect of Allium sativum (Garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J Phytomed. 2016;6(4):458-67. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967842/pdf/AJP-6-458.pdf

Thuy BTP, My TTA, Hai NTT, Hieu LT, Hoa TT, Phuong TH, et al. Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS omega. 2020; 5(14):8312-20. https://doi.org/10.1021/acsomega.0c00772

López MT. El ajo propiedades farmacológicas e indicaciones terapéuticas. Offarm. 2007;26(1):79-81. Disponible en: https://www.elsevier.es/es-revista-offarm-4-pdf-13097334

Fredotović Ž, Šprung M, Soldo B, Ljubenkov I, Budić-Leto I, Bilušić T, et al. Chemical composition and biological activi-ty of Allium cepa L. and Allium × cornutum (Clementi ex Visiani 1842) methanolic extracts. Molecules. 2017;22(3):448. https://doi.org/10.3390/molecules22030448

Hanieh H, Narabara K, Piao M, Gerile C, Abe A, Kondo Y. Modulatory effects of two levels of dietary Alliums on immune response and certain immunological variables, following immunization, in White Leghorn chickens. Anim Sci J. 2010;81(6): 673-80. https://doi.org/10.1111/j.1740-0929.2010.00798.x

Elberry AA, Mufti S, Al-Maghrabi J, Abdel Sattar E, Ghareib SA, Mosli HA, et al. Immunomodulatory effect of red onion (Allium cepa Linn) scale extract on experimentally induced atypical prostatic hyperplasia in Wistar rats. Mediators Inflamm. 2014; 2014:640746. https://doi.org/10.1155/2014/640746

Oliveira TT, Campos KM, Cerqueira-Lima AT, et al. Potential therapeutic effect of Allium cepa L. and quercetin in a murine model of Blomia tropicalis induced asthma. Daru. 2015;23(1):18. https://doi.org/10.1186/s40199-015-0098-5

Kuttan G. Immunomodulatory effect of some naturally occuring sulphur-containing compounds. J Ethnopharmacol. 2000; 72(1-2),93-9. https://doi.org/10.1016/S0378-8741(00)00211-7

Kumar VP, Prashanth KVH, Venkatesh YP. Structural analyses and immunomodulatory properties of fructo-oligosaccharides from onion (Allium cepa). Carbohydr Polym. 2015;117:115-22. https://doi.org/10.1016/j.carbpol.2014.09.039

Kumar VP, Venkatesh YP. Alleviation of cyclophosphamide-induced immunosuppression in Wistar rats by onion lectin (Allium cepa agglutinin). J. Ethnopharmacol. 2016;186:280-8. https://doi.org/10.1016/j.jep.2016.04.006

Prasanna VK, Venkatesh YP. Characterization of onion lectin (Allium cepa agglutinin) as an immunomodulatory protein indu-cing Th1-type immune response in vitro. Int Immunopharmacol. 2015;26(2):1-10. https://doi.org/10.1016/j.intimp.2015.04.009

Batiha G, Beshbishy A, Mulla Z, Ikram M, El-Hack, M, Taha AE. The pharmacological activity, biochemical pro-perties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. foods. 2020;9(3):374. https://doi.org/10.3390/foods9030374

Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol. 2004;78(20):11334-9. https://doi.org/10.1128/JVI.78.20.11334-11339.2004

Nguyen TTH, Woo H-J, Kang H-K, Nguyen VD, Kim Y-M, Kim D-W, et al. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett. 2012;34(5):831-8. https://doi.org/10.1007/s10529-011-0845-8

Kumar S, Kumari R, Mishra S. Pharmacological properties and their medicinal uses of Cinnamomum: a review. J Pharm Pharmacol. 2019;71(12):1735-61. https://doi.org/10.1111/jphp.13173

Cao H, Urban J, Anderson R. Cinnamon polyphenol extract affects immune responses by regulating anti- and proinflammatory and glucose transporter gene expression in mouse macrophages. J Nutr. 2008;138(5):833-40. https://doi.org/10.1093/jn/138.5.833

Hagenlocher Y, Hösel A, Bischoff S, Lorentz A. Cinnamon extract reduces symptoms, inflammatory mediators and mast cell markers in murine IL-10(-/-) colitis. J Nutr Biochem. 2016;30:85-92. https://doi.org/10.1016/j.jnutbio.2015.11.015

Beom-Joon L, Youn-Jung K, Dong-Hyung C, Nak-Won S, Hee K. Immunomodulatory effect of water extract of cinnamon on anti-CD3-induced cytokine responses and p38, JNK, ERK1/2, and STAT4 activation. Immunopharmacol Immunotoxicol. 2011;33(4):714-22. https://doi.org/10.3109/08923973.2011.564185

Orihara Y, Hamamoto H, Kasuga H, Shimada T, Kawaguchi Y, Sekimizu K. A silkworm-baculovirus model for assessing the therapeutic effects of antiviral compounds: Characterization and application to the isolation of antivirals from traditional medicines. J Gen Virol. 2008;89(1):188-94. https://doi.org/10.1099/vir.0.83208-0

Liu L, Wei F, Qu Z, Wang S, Chen G, Gao H, et al. The antiadenovirus activities of Cinnamaldehyde in vitro. Science. 2009;40(11):669-74. https://doi.org/10.1309/LMF0U47XNDKBZTRQ

Connell BJ, Chang S-Y, Prakash E, Yousfi R, Mohan V, Posch W, et al. A cinnamon-derived procyanidin compound displays anti-HIV-1 activity by blocking heparan sulfate- and co-receptor- binding sites on gp120 and reverses t cell exhaustion via impeding Tim-3 and PD-1 upregulation. PLoS One. 2016;11(10):e0165386. https://doi.org/10.1371/journal.pone.0165386

Ademosun AO, Oboh G. Anticholinesterase and antioxidative properties of water-extractable phytochemicals from some citrus peels. J Basic Clin Physiol Pharmacol. 2014;25(2):199-204. https://doi.org/10.1515/jbcpp-2013-0027

Cheng L, Zheng W, Li M, Huang J , Bao S, Xu Q , et al. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2. Preprints. 2020. https://www.preprints.org/manuscript/202002.0313/v1

Cardile V, Frasca G, Rizza L, Rapisarda P, Bonina F. Antiinflammatory effects of a red orange extract in human keratinocytes treated with interferon-gamma and histamine. Phytother Res. 2010;24(3):414-8. https://doi.org/10.1002/ptr.2973

Coelho RC, Hermsdorff HH, Bressan J. Anti-inflammatory properties of orange juice: Possible favorable molecular and meta-bolic effects. Plant Foods Hum Nutr. 2013;68(1):1-10. https://doi.org/10.1007/s11130-013-0343-3

Ulasli M, Gurses SA, Bayraktar R, Yumrutas O, Oztuzco S, Igci M, et al. The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol Biol Rep. 2014;41(3):1703-11. https://doi.org/10.1007/s11033-014-3019-7

Clapé O, Alfonso A. Avances en la caracterización farmacotoxicológica de la planta medicinal Curcuma longa Linn. Medisan. 2012;16(1):97-114. Disponible en: http://scielo.sld.cu/pdf/san/v16n1/san13112.pdf

García LL, Olaya JH, Sierra JI, Padilla L. Actividad biológica de tres Curcuminoides de Curcuma longa L. (Cúrcuma) cultivada en el Quindío-Colombia. Rev Cubana Plant Med. 2017;22(1). Disponible en: http://scielo.sld.cu/pdf/pla/v22n1/pla07117.pdf

Dosoky NS, Setzer WN. Chemical composition and biological activities of essential oils of curcuma species. Nutrients. 2018;10(9):1196. https://doi.org/10.3390/nu10091196

Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013;15(1):195-218. https://doi.org/10.1208/s12248-012-9432-8

Sornpet B, Potha T, Tragoolpua Y, Pringproa K. Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. Asian Pac J Trop Med. 2017;10(9):871-6. https://doi.org/10.1016/j.apjtm.2017.08.010

Han S, Xu J, Guo X, Huang M. Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production. Clin Exp Pharmacol Physiol. 2018;45(1):84-93. https://doi.org/10.1111/1440-1681.12848

Catanzaro M, Corsini E, Rosini M, Racchi M, Lanni C. Immunomodulators inspired by nature: A review on curcumin and echinacea. molecules. 2018;23(11):2778. https://doi.org/10.3390/molecules23112778

Yue GG, Chan BC, Hon PM, et al. Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa. Food Chem Toxicol. 2010;48(8-9):2011-20. https://doi.org/10.1016/j.fct.2010.04.039

Dutta K, Ghosh D, Basu A. Curcumin protects neuronal cells from Japanese encephalitis virus-mediated cell death and also inhibits infective viral particle formation by dysregulation of ubiquitin-proteasome system. J Neuroimmune Pharmacol. 2009;4(3):328-37. https://doi.org/10.1007/s11481-009-9158-2

Kim K, Kim KH, Kim HY, Cho HK, Sakamoto N, Cheong J. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway. FEBS Lett. 2010;584(4):707-12. https://doi.org/10.1016/j.febslet.2009.12.019

Wei ZQ, Zhang YH, Ke CZ, et al. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation. World Journal of Gastroenterology. 2017;23(34):6252. https://doi.org/10.3748/wjg.v23.i34.6252

Chen DY, Shien JH, Tiley L, Chiou SS, Wang SY, Chang TJ, et al. Curcumin inhibits influenza virus infection and haemagglu-tination activity. Food Chemistry. 2010;119(4):1346-51. https://doi.org/10.1016/j.foodchem.2009.09.011

Chen L, Hu C, Hood M, Zhang X, Zhang L, Kan J, et al. A novel combination of vitamin C, curcumin and glycyrrhizic acid potentially regulates immune and inflammatory response associated with coronavirus infections: A perspective from system biology analysis. nutrients. 2020;12(4):1193. https://doi.org/10.3390/nu12041193

Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, et al. Specific plant terpenoids and lignoids possess po- tent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem. 2007;50(17):4087-95. https://doi.org/10.1021/jm070295s

Shah BH, Nawaz Z, Pertani SA. Efecto inhibidor de la curcumina, una especia alimenticia de la cúrcuma, so-bre la agregación plaquetaria mediada por el factor activador de plaquetas y el ácido araquidónico a través de la inhibición de la formación de tromboxano y la señalización de Ca2 +. Biochem Pharmacol. 1999;58:1167-72. https://doi.org/10.1016/S0006-2952(99)00206-3

Shaygannia E, Bahmani M, Zamanzad B, Rafieian-Kopaei M. A review study on Punica granatum L. J Evid Based Comple-mentary Altern Med. 2016;21(3):221-7. https://doi.org/10.1177/2156587215598039

Wu S, Tian L. Diverse phytochemicals and bioactivities in the ancient fruit and modern functional food pomegranate (Punica granatum). Molecules. 2017;22(10):1606. https://doi.org/10.3390/molecules22101606

Shukla M, Gupta K, Rasheed Z, Khan KA, Haqqi TM. Consumption of hydrolyzable tannins-rich pomegra¬na- te extract suppresses inflammation and joint damage in rheumatoid arthritis. Nutrition. 2008;24(7-8):733-43. https://doi.org/10.1016/j.nut.2008.03.013

Shuang G, Yiying Z, Xin Y, Wanlu L, Bing H, Jing L. Ellagic acid protects against LPS-induced acute lung injury through inhibition of nuclear factor kappa B, proinflammatory cytokines and enhancement of interleukin-10. Food Agric Immunol. 2017;28(6):1347-61. https://doi.org/10.1080/09540105.2017.1339670

Rahimi VB, Ghadiri M, Ramezani M, Askari VR. Antiinflammatory and anti-cancer activities of pomegranate and its constituent, ellagic acid: Evidence from cellular, animal, and clinical studies. Phytother Res. 2020;34(4):685-720. https://doi.org/10.1002/ptr.6565

Gavlighi HA, Tabarsa M, You S, Surayot U, Ghaderi-Ghahfarokhi M. Extraction, characterization and immunomodulatory property of pectic polysaccharide from pomegranate peels: Enzymatic vs conventional approach. Int J Biol Macromol. 2018;116:698-706. https://doi.org/10.1016/j.ijbiomac.2018.05.083

Wu Y, Zhu CP, Zhang Y, Li Y, Sun JR. Immunomodulatory and antioxidant effects of pomegranate peel polysaccharides on immunosuppressed mice. Int J Biol Macromol. 2019;137:504-11. https://doi.org/10.1016/j.ijbiomac.2019.06.139

Ciavarella C, Motta I, Valente S, Pasquinelli G. Pharmacological (or synthetic) and nutritional agonists of PPAR-as can- didates for cytokine storm modulation in COVID-19 disease. Molecules. 2020;25(9):E2076. https://doi.org/10.3390/molecu- les25092076

Moraldi MT, Karimi A, Shahrani M, Hashemi L, Ghaffari-Goosheh MS. Anti-influenza virus activity and phenolic content of pomegranate (Punica granatum L.) peel extract and fractions. Avivenna J Med. Biotechnol. 2019;11(4):285-91. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925405

Moradi MT, Karimi A, Rafieian-Kopaei M, Rabiei-Faradonbeh M, Momtaz H. Pomegranate peel extract inhibits internali-zation and replication of the influenza virus: An in vitro study. Avicenna J Phytomed. 2020;10(2):143-51. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7103433/

Sundararajan A, Ganapathy R, Huan L, Dunlap JR, Webby RJ. Kotwa GJ, et al. Influenza virus variation in susceptibi-lity to inactivation by pomegranate polyphenols is determined by envelope glycoproteins. Antiviral Res. 2010;88(1):1-9. https://doi.org/10.1016/j.antiviral.2010.06.014

Haidari M, Ali M, Ward Casscells S 3rd, Madjid M. Pomegranate (Punica granatum) purified polyphenol ex¬tract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomedicine. 2009;16(12):1127-36. https://doi.org/10.1016/j. phymed.2009.06.002

Veberic R, Jakopic J, Stampar F, Schmitzer V. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, antho-cyanins and selected polyphenols. Food Chemistry. 2009;114(2):511-5. https://doi.org/10.1016/j.foodchem.2008.09.080

Zielińska-Wasielica J , Olejnik A, Kowalska K, Olkowicz M, Dembczyński R. Elderberry (Sambucus nigra L.) Fruit extract alleviates oxidative stress, insulin resistance, and inflammation in hypertrophied 3T3-L1 adipocytes and activated RAW 264.7 Macrophages. Foods. 2019;8(8):326. https://doi.org/10.3390/foods8080326

Thanh G, Wangensteen H, Barsett H. Elderberry and elderflower extracts, phenolic compounds, and metaboli¬tes and their effect on complement, RAW 264.7 macrophages and dendritic cells. Int. J. Mol. Sci. 2017;18(3):584. https://doi.org/10.3390/ ijms18030584

Torabian G, Valtchev P, Adil Q, Dehghan F. Anti-influenza activity of elderberry (Sambucus nigra). J Funct Foods. 2019;54(1):353-60. https://doi.org/10.1016/j.jff.2019.01.031

Badescu M, Badulescu O, Badescu L, Ciocoiu M. Effects of Sambucus nigra and Aronia melanocarpa extracts on immune system disorders within diabetes mellitus. Pharm Biol. 2015;53(4):533-9. https://doi.org/10.3109/13880209.2014.931441

Karimi S, Mohammadi A, Dadras H. The effect of Echinacea purpurea and Sambucus nigra L. on H9N2 avian influenza virus in infected chicken embryo. Veterinarski Arhiv. 2014;84(2):153-65. Disponible en: http://intranet.vef.hr/vetarhiv/pa- pers/2014-84-2-5.pdf

Roschek B, Fink R, McMichael M, Li D, Alberte R. Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phyto-chemistry. 2009;70(10):1255-61. https://doi.org/10.1016/j.phytochem.2009.06.003

Chen C, Zuckerman DM, Brantley S, Sharpe S, Childress K, Hoiczyk E, et al. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Vet Res. 2014;10(24). https://doi.org/10.1186/1746-6148-10-24

Weng JR, Lin CS, Lai HC, Lin YP, Wang CY, Tsai YC, et al. Antiviral activity of Sambucus Formosana Nakai etha-nol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res. 2019;273:197767. https://doi.org/10.1016/j.virusres.2019.197767

Ali K, Maltés F, Choi Y, Verpoorte R. Metabolic constituents of grapevine metabólicos de la vid y productos derivados de la uva. Fhytochem Rev. 2010;9(3):357-8. https://doi.org/10.1007/s11101-009-9158-0

Riviere C, Pawlus AD, Merillon JM. Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat Prod Rep. 2012;29(11):1317-33. https://doi.org/10.1039/c2np20049j

Kim SJ, Lee JW, Eun YG, Lee KH, Yeo SG, Kim SW. Pretreatment with a grape seed proanthocyanidin extract downregu-lates proinflammatory cytokine expression in airway epithelial cells infected with respiratory syncytial virus. Mol Med Rep. 2019;19(4):3330-6. https://doi.org/10.3892/mmr.2019.9967

Campagna M, Rivas C. Antiviral activity of resveratrol. Biochem Soc Trans. 2010;38:50-3. https://doi.org/10.1042/BST0380050

Zhao X, Tong W, Song X, et al. Antiviral effect of resveratrol in piglets infected with virulent pseudorabies virus. Viruses. 2018;10(9):457-67. https://doi.org/10.3390/v10090457

Lin S-C, Ho C-T, Chuo W-H, Li S, Wang TT, Lin C-C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis. 2017;17(1):144. https://doi.org/10.1186/s12879-017-2253-8

Nair N, Mahajan S, Chawda R, Kandaswami C, Shanahan T, Schwartz S, et al. Grape seed extract activates Th1cells in vitro Clin Diagn Lab Immunol. 2002;9(2):470-6. https://doi.org/10.1128/CDLI.9.2.470-476.2002

Chen WC, Tseng CK, Chen BH, Lin CK, Lee JC. Grape Seed extract attenuates hepatitis C virus replication and virus-induced inflammation. Front Pharmacol. 2016;7:490. https://doi.org/10.3389/fphar.2016.00490

Tong H, Song X, Sun X, Sun G, Du F. Immunomodulatory and antitumor activities of grape seed proanthocyanidins . J Agric Food Chem. 2011;59(21):11543-7. https://doi.org/10.1021/jf203170k

Ezzat SM, Ezzat MI, Okba MM, Menze ET, Abdel-Naim AB. The hidden mechanism beyond ginger (Zingi¬ber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity. J Ethnopharmacol. 2018;214:113-23. https://doi.org/10.1016/j. jep.2017.12.019

Feng T, Su J, Ding ZH, et al. Chemical constituents and their bioactivities of “Tongling White Ginger” (Zingiber officinale). J Agric Food Chem. 2011;59(21):11690-5. https://doi.org/10.1021/jf202544w

Fahmi A, Hassanen N, Abdur-Rahman M, Shams-Eldin E. Phytochemicals, antioxidant activity and hepatopro¬tective effect of ginger (Zingiber officinale) on diethylnitrosamine toxicity in rats. Biomarkers. 2019;24(5):436-47. https://doi.org/10.1080/1 354750X.2019.1606280

Kawamoto Y, Ueno Y, Nakahashi E, et al. Prevention of allergic rhinitis by ginger and the molecular basis of immunosuppres-sion by 6-gingerol through T cell inactivation. J Nutr Biochem. 2016;27:112-22. https://doi.org/10.1016/j.jnutbio.2015.08.025

Chang JS, Wang KC, Yeh CF, Shieh DE, Chiang LC. Fresh ginger (Zingiber officinale) has anti-viral activity aga-inst human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2013;145(1):146-51. https://doi.org/10.1016/j.jep.2012.10.043

Jayasundar R, Ghatak S, Makhdoomi MA, Luthra K, Singh A, Velpandian T. Challenges in integrating component level tech-nology and system level information from Ayurveda: Insights from NMR phytometabolomics and anti-HIV potential of select Ayurvedic medicinal plants. J Ayurveda Integr Med. 2019;10(2):94-101. https://doi.org/10.1016/j.jaim.2017.06.002

Sivaraman D, Pradeep PS. Scope of phytotherapeutics in targeting ACE2 mediated Host-Viral Interface of SARS-CoV2 that causes COVID-19. Chem Rxiv. 2020. https://doi.org/10.26434/chemrxiv.12089730

Mozaffari-Khosravi H, Naderi Z, Dehghan A, Nadjarzadeh A, Fallah Huseini H. Effect of ginger supplementation on proin-flammatory cytokines in older patients with osteoarthritis: Outcomes of a randomized controlled clinical trial. J Nutr Gerontol Geriatr. 2016;35(3):209-18. https://doi.org/10.1080/21551197.2016.1206762

Vahdat-Shariatpanahi Z, Mokhtari M, Taleban FA, Alavi F, Surmaghi M, Mehrabi Y, et al. Effect of enteral feeding with ginger extract in acute respiratory distress syndrome. J Crit Care. 2013;28(2):217. https://doi.org/10.1016/j.jcrc.2012.04.017

Descargas

Publicado

2021-08-23

Cómo citar

Huaccho Rojas, J. J., Yánac Tellería, W. M. ., Balladares Quintana, A. D., Rodriguez Manyari, L. C., Galarza Puertas, S. J. ., Vallejos Gamboa, J. L., Aranda Ventura, J. A. ., & Villar López, M. (2021). Alimentos con potencial efecto inmunomodulador y antiviral a propósito de la pandemia COVID-19. Perspectivas En Nutrición Humana, 23(2), 199–220. https://doi.org/10.17533/udea.penh.v23n2a06

Número

Sección

Artículos de Revisión

Artículos más leídos del mismo autor/a