Energy and Exergy analysis of a light duty diesel engine operating at different altitudes

Authors

  • John Agudelo Universidad de Antioquia
  • Andrés Agudelo Universidad de Antioquia
  • Juan Pérez Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.redin.16018

Keywords:

Heat release, altitude effect, diesel engines, exergy analysis

Abstract

Altitude above sea level produces a reduction in air density affecting the combustion process, pollutant emissions, and engine performance. In this work the combustion diagnosis of an automotive turbocharged diesel enginewas carried out from in-cylinder pressure signal. Tests were performed at three altitudes above sea level, under steady state operating conditions, using conventional diesel fuel. As altitude above sea level increased, the fuel/air mixture became richer. The brake specific fuel consumption, combustion duration, premixed combustion phase, maximum temperature, heat rejected to the gases and exergy destruction were also increased; at the same time, brake thermal efficiency, maximum in-cylinder pressure and in-cylinder exergy decreased. Mechanical efficiency and injection timing remained approximately invariable. Exergy destruction differences were caused by the combustion process, without significant effects during compression and expansion. The greater irreversibility resulting from altitude increase was linked with the lower energy quality of the exhaust gases.

|Abstract
= 1846 veces | PDF (ESPAÑOL (ESPAÑA))
= 151 veces|

Downloads

Download data is not yet available.

Author Biographies

John Agudelo, Universidad de Antioquia

Grupo de manejo eficiente de la energía GIMEL. Facultad de ingeniería

Andrés Agudelo, Universidad de Antioquia

Grupo de manejo eficiente de la energía GIMEL. Facultad de ingeniería

Juan Pérez, Universidad de Antioquia

Grupo de manejo eficiente de la energía GIMEL. Facultad de ingeniería

References

M. Lapuerta, O. Armas, J. R. Agudelo, C. A. Sánchez. “Estudio del efecto de la altitud sobre el comportamiento de motores de combustión interna. Parte 1: Funcionamiento”. Información Tecnológica. Vol. 17. 2006. pp. 21-30. DOI: https://doi.org/10.4067/S0718-07642006000500005

J. R. Sodré, S. M. C. Soares. “Comparison of engine power correction factors for varying atmospheric conditions”. Journal of the Brazilian Society of Mechanical Sciences and Engineering. Vol. 25. 2003. pp. 295-305. DOI: https://doi.org/10.1590/S1678-58782003000300010

S. M. C. Soares, J. R. Sodré. “Effects of atmospheric temperature and pressure on the performance of a vehicle”. Proc. Instn. Mech. Engrs. Part D. Vol. 216. 2002. pp. 473-477.

J. B. Heywood. Internal combustion engine fundamentals. Ed. McGraw-Hill. New York. 1988. pp. 980.

J. Arrègle, J. J. López, J. M. García, C. Fenollosa.“Development of a zero-dimensional diesel combustion model. Part 1: Analysis of the quasi-steady difussion combustion phase”. Applied Thermal Engineering.Vol. 23. 2003. pp. 1301-1317. DOI: https://doi.org/10.1016/S1359-4311(03)00079-6

H. Hiroyasu, M. Arai, M. Tabata. “Empirical equations for the Sauter mean diameter of a Diesel spray”. SAE890464. 1989. pp. 1-12. DOI: https://doi.org/10.4271/890464

J. E. Dec. Conceptual model of DI Diesel combustion based on laser-sheet imaging. SAE 970873. 1997. pp. 1-15. DOI: https://doi.org/10.4271/970873

M. Lapuerta, O. Armas, J. R. Agudelo, A. F. Agudelo.“Estudio del efecto de la altitud sobre el comportamiento de motores de combustión interna. Parte 2: Motores diesel”, Información Tecnológica. Vol. 17. 2006. pp. 31-41. DOI: https://doi.org/10.4067/S0718-07642006000500006

S. Lizhong, S. Yungang, Y. Wensheng, X. Junding. “Combustion Process of Diesel Engines at Regions with Different Altitude”. SAE 950857. 1995. pp. 1-10. DOI: https://doi.org/10.4271/950857

M. Lapuerta, O. Armas, J. J. Hernández. “Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas”. Applied Thermal Engineering. Vol. 19. 1999. pp. 513-529. DOI: https://doi.org/10.1016/S1359-4311(98)00075-1

G. Woschni. “A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine”. SAE 670931. 1967. pp. 1-15. DOI: https://doi.org/10.4271/670931

B. D. Hsu, Practical diesel-engine combustion analysis. Society of Automotive Engineers – SAE. Warrendale. 2002. pp. 1-10. DOI: https://doi.org/10.4271/R-327

M. A. Rosen, I. Dincer. “Effect of varying dead-state properties on energy and exergy analyses of thermal systems”. International Journal of Thermal Sciences. Vol. 43. 2004. pp. 121–133. DOI: https://doi.org/10.1016/j.ijthermalsci.2003.05.004

J. Etele, M. A. Rosen, “Sensitivity of exergy efficiencies of aerospace engines to reference environment selection”. Exergy Int. J. Vol. 1. 2001. pp. 91-99. DOI: https://doi.org/10.1016/S1164-0235(01)00014-0

D. E. Foster. “An overview of zero-dimensional thermodynamic models for IC engine data analysis”. SAE 852070. 1985. pp. 1-15. DOI: https://doi.org/10.4271/852070

J. A. Caton. “Results from the second-law of thermodynamics for a spark-ignition engine using an engine cycle simulation”. Fall Technical Conference, ASME-ICED. 1999. pp. 35-49.

H. N. Shapiro, J. H. Van Gerpen. “Two zone combustion models for second law analysis of internal combustion engines”. SAE 890823. 1989. pp. 1-12. DOI: https://doi.org/10.4271/890823

M. Lapuerta, R. Ballesteros, J. R. Agudelo. “Effect of the gas state equation on the thermodynamic diagnostic of diesel combustion”. Applied Thermal Engineering. Vol. 26. 2006. pp. 1492-1499. DOI: https://doi.org/10.1016/j.applthermaleng.2006.01.001

A. Valero, M. Lozano. “Energy, entropy, exergy and free energy balances. Methods for the diagnosis of industrial facilities”. Ingeniería Química. Mayo. 1987. pp. 143-153.

M. J. Moran, H. N. Shapiro. Fundamentals of Engineering Thermodynamics. 5th ed. Ed. John Wiley & Sons. The Atrium. 2006. pp. 855.

I. Dincer, Y. A. Cengel. “Energy, entropy and exergy concepts and their roles in thermal engineering”. Entropy. Vol. 3. 2001. pp. 116-149. DOI: https://doi.org/10.3390/e3030116

C. D. Rakopoulos. “Evaluation of a spark ignition engine cycle using first and second law analysis techniques”. Energy Conversion and Management. Vol. 34. 1993. pp. 1299-1314. DOI: https://doi.org/10.1016/0196-8904(93)90126-U

F. Bozza, R. Nocera, A. Senatore, R. Tuccillo. “Second law analysis of turbocharged engine operation”. SAE 910418. 1991. pp. 1-10. DOI: https://doi.org/10.4271/910418

J. Li, L. Zhou, K. Pan, D. Jiang, J. Chae. “Evaluation ofthe thermodynamic process of indirect injection diesel engines by the first and second law”. SAE 952055. 1995. pp. 1-12. DOI: https://doi.org/10.4271/952055

C. D. Rakopoulos, E. G. Giakoumis. “Second-law analyses applied to internal combustion engines operation”. Progress in Energy and Combustion Science. Vol. 32. 2006. pp. 2-47. DOI: https://doi.org/10.1016/j.pecs.2005.10.001

J. Szargut, D. R. Morris, F. R. Steward. Exergy analysis of thermal, chemical, and metallurgical processes. Ed. Hemisphere Publishing Corporation. New York. 1988. pp. 345.

T. J. Kotas. The exergy method of thermal plant analysis. Ed. Krieger Publishing Company. Malabar. Florida. 1995. pp. 350.

D. C. Kyritsis, C. D. Rakopoulos. «Parametric study of the availability balance in an internal combustion engine cylinder». SAE 2001-01-1263. 2001. pp. 1-13. DOI: https://doi.org/10.4271/2001-01-1263

C. D. Rakopoulos, D. C. Kyritsis. “Comparative second-law analysis of internal combustion engine operation for methane, methanol, and dodecane fuels”. Energy. Vol. 26. 2001. pp. 705-22. DOI: https://doi.org/10.1016/S0360-5442(01)00027-5

C. D. Rakopoulos, E. G. Giakoumis. “Development of cumulative and availability rate balances in a multicylinder turbocharged indirect injection diesel engine”. Energy Conversion and Management. Vol. 38. 1997. pp. 347-369. DOI: https://doi.org/10.1016/S0196-8904(96)00055-6

C. D. Rakopoulos, E. G. Giakoumis. “Availability analysis of a turbocharged diesel engine operating under transient load conditions”. Energy. Vol. 29. 2004. pp. 1085-1104. DOI: https://doi.org/10.1016/j.energy.2004.02.028

M. Brunt, A. Emtage. “Evaluation of IMEP routines and analysis errors”. SAE 960609. 1996. pp. 1-17. DOI: https://doi.org/10.4271/960609

A. Agudelo, J. R. Agudelo, P. Benjumea Diagnóstico de la combustión de biocombustibles en motores. Ed. Universidad de Antioquia. Medellín. Marzo 2007. Pp 147.

Ilba Cuadrado. J. R. Agudelo, C. Sánchez. Flujo compresible en múltiples de motores. Ed. Universidad de Antioquia. Medellín. Septiembre 2008. pp 123.

Y. Zhang, J. H. Van Gerpen. “Combustion analysis of esters of soybean oil in a diesel engine”. SAE 960765. 1996. pp. 1-12 . DOI: https://doi.org/10.4271/960765

B. Xiaoping, Z. Gengyun, Z. Xiaojing. “Predicting Vehicle Turbocharged Diesel Engine Performance at Altitude”. SAE 961826. 1996. pp. 1-9. DOI: https://doi.org/10.4271/961826

M. K. Anderson, D. N. Assanis, Z. S. Filipi. “First and second law analyses of a naturally-aspirated, Miller cycle, SI engine with late intake valve closure”. SAE 980889. 1998. pp. 1-12. DOI: https://doi.org/10.4271/980889

J. A. Velásquez, L. F. Milanez. “Analysis of the irreversibilities in diesel engines”. SAE 940673. 1994. pp.1-12. DOI: https://doi.org/10.4271/940673

A. Parlak, H. Yasar, O. Eldogan. “The effect of thermal barrier coating on a turbo-charged Diesel engine performance and exergy potential of the exhaust gas”. Energy Conversion and Management. Vol. 46. 2005. pp. 489-499 DOI: https://doi.org/10.1016/j.enconman.2004.03.006

Published

2013-07-24

How to Cite

Agudelo, J., Agudelo, A., & Pérez, J. (2013). Energy and Exergy analysis of a light duty diesel engine operating at different altitudes. Revista Facultad De Ingeniería Universidad De Antioquia, (48), 45–54. https://doi.org/10.17533/udea.redin.16018

Most read articles by the same author(s)

1 2 > >>