Benzo[a]pyrene from food and cancer
DOI:
https://doi.org/10.17533/udea.penh.17909Keywords:
benzo[a]pyrene, food, anticarcinogenic agents, xenobiotics, carcinogenic, genotoxic, mutagenic, polycyclic hydrocarbons, aromaticAbstract
Background: Benzo[a]pyrene is a polycyclic aromatic hydrocarbon which has been related with adverse health outcomes. Food is a source of benzo[a]pyrene; which is produced during industrial processing or cooking. Objective: To review information about benzo(a)pyrene formation in food, biological activation, association with cancer, food content and regulation of benzo(a)pyrene content in human food. Methods: A literature search from national and international scientific databases was developed. Results: benzo[a]pyrene ingested is absorbed by the intestine metabolized and activated, predominantly, by the liver. Animal studies have associated benzo[a]pyrene with esophagus, stomach, intestine, skin, bladder, lung, and liver cancer. Benzo[a]pyrene is potentially toxic to the fetus, due to it passes trough placenta. Benzo[a]pyrene amounts in some foods exceed the maximum level allowed by the European Commission; which periodically updates legislation on this topic. In Colombia there is not regulation about benzo[a]pyrene. Conclusion: benzo[a]pyrene in food generates compounds that may be associated with cancer, mainly gastrointestinal cancer. The European Commission regularly updates regulation about benzo[a]pyrene content in foods. Colombia does not have regulation on this topic.
Downloads
References
Jakszyn P, González CA. Nitrosamine and related food intake and gastric and oesophageal cancer risk: a systematic review of the epidemiological evidence. World J Gastroenterol. 2006;12:4296-303.
Xue W, Warshawsky D. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol. 2005;206:73-93.
Pott P. Cancer scroti. In: Pott P, ed. Chirurgical observations. London: Hawes, Clarke, Collins; 1775. p.179-80.
Agudo A. Los hidrocarburos aromáticos policíclicos (HAP). Acercamiento a su problemática como riesgo laboral. Madrid: Secretaría de Salud Laboral y Medio Ambiente MCA-UGT Federación de Industria 2010. Pág. 130. [citado abril de 2013]. Disponible en: http://www.ugt.es/saludlaboral/Hidrocarburos.pdf.
Ryser HJ. Chemical carcinogenesis. N Engl J Med. 1971;285:721-34.
Henry SA, Kennaway NM, Kennaway EL. The incidence of cancer of the bladder and prostate in certain occupations. J Hyg. 1931;31:125-37.
De la Cruz ER, Huaman JO. Formación de hidrocarburos aromáticos policíclicos y del 3,4 benzopireno en aceites comestibles alterados por recalentamiento. Tesis para optar por el título de Químico Farmacéutico. Lima: Universidad Nacional de San Marcos; 2002.
Kazerouni N, Sinha R, Hsu CH, Greenberg A, Rothman N. Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem Toxicol. 200;39:423-36.
Essumang DK, Dodoo DK, Adjei JK. Polycyclic aromatic hydrocarbon (PAH) contamination in smoke-cured fish products. Ghana J Food Comp Anal. 2012;27. :128 -38.
FAO/WHO. Evaluation of certain food contaminants, sixty-seventh report of the Joint Expert Committee on Food Additives. Geneva; 2006. WHO Technical report series, N° 930.
Scientific opinion of the Panel on Contaminants in the Food Chain. (Question N° EFSA-Q-2007-136) adopted on 9 June 2008. Polycyclic aromatic hydrocarbons in food. EFSA J. 2008;724:2-114.
Codex Alimentario. Código de prácticas para reducir la contaminación por hidrocarburos aromáticos policíclicos (HAP) en los alimentos producidos por procedimientos de ahumado y secado directo: CAC/RCP 68-2009. Roma: FAO; 2009.
Lichtfouse E, Apitz S, Nanny M. Ancient polycyclic aromatic hydrocarbons in modern soils: 13C, 14C and biomark er evidence. Org Geochem. 1999;26:353-9.
Vasiluk L, Pinto LJ, Tsang WS, Gobas FA, Eickhoff C, Moore MM. The uptake and metabolism of benzo[a]pyrene from a sample food substrate in an in vitro model of digestion. Food Chem Toxicol. 2008;46:610-8.
Henkjan J, Verkade HJ, Tso P. Biophysics of intestinal luminal lipids. In: Mansbach CM. Intestinal lipid metabolism. New York: Kluwer Academic/Plenum; 2001. p. 1-19.
WHO, IARC. Monographs on the evaluation the carcinogenic risks to humans: some non-heterocyclic polycuclic aromatic hydrocarbons and some related exposures. Lyon; 2010. Vol. 92.
Buesen R, Mock M, Nau H, Seidel A, Jacob J, Lampen A. Human intestinal Caco-2 cells display active transport of benzo[a] pyrene metabolites. Chem Biol Interact. 2003;142:201-21.
Cavret S, Feidt C. Intestinal metabolism of PAH: in vitro demonstration and study of its impact on PAH transfer through the intestinal epithelium. Environ Res. 2005;98:22-32.
Boulenc X, Bourrie M, Fabre I, Roque C, Joyeux H, Berger Y, et al. Regulation of cytochrome P450IA1 gene expression in a human intestinal cell line, Caco-2. J Pharmacol Exp Ther. 1992;263:1471-8.
Kaarthik J. Modulation of gene expression and DNA adduct formation by chlorophyllin in human mammary cells exposed to benzopyrenes. West Virginia: Department of Plant and Soil Science Morgantown; 2006.
Slayne MA. Polycyclic aromatic hydrocarbons in vegetable oil. Int Rev Food Sci Technol. 2003;141:136-7.
Quiñones L, Lee K, Varela N, Escala M, García K, Godoy L, et al. Farmacogenética del cáncer: Estudio de variaciones genéticamente determinadas en la susceptibilidad a cáncer por exposición a xenobióticos. Rev Med Chile. 2006;134:499-515.
Ruan Q, Gelhaus SL, Penning TM, Harvey RG, Blair IA. Aldo-keto reductase- and cytochrome P450-dependent formation of benzo[a]pyrene-derived DNA adducts in human bronchoalveolar cells. Chem Res Toxicol. 2007;20:424-31.
Wei Y, Lin Y, Zhang AQ, Guo LH, Cao J. Evaluation of the noncovalent binding interactions between polycyclic aromatic hydrocarbon metabolites and human p53 cDNA. Sci Total Environ. 2010;408:6285-90.
Tarantini A, Maitre A, Lefebvre E, Marques M, Rajhi A, Douki T. Polycyclic aromatic hydrocarbons in binary mixtures modulate the efficiency of benzo[a]pyrene to form DNA adducts in human cells. Toxicology. 2011;279:36-44.
Gao M, Li Y, Sun Y, Long J, Kong Y, Yang S, et al. A common carcinogen benzo(a)pyrene causes p53 overexpression in mouse cervix via DNA damage. Mutat Res. 2011;724:69-75.
Mastrangelo G, Fadda E, Marzia V. Polycyclic aromatic hydrocarbons and cancer in man. Environ Health Perspect. 1996 Nov;104:1166-70.
Osborne MR, Crosby NT. Benzopyrenes: Cambridge monographs on cancer research. Boston: Cambridge University Press;1987. p. 352.
Denissenko MF, Pao A, Tang M, Pfeifer GP. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996;274:430-2.
Shemer H, Linden KG. DNA methylation analysis using CpG microarrays is impaired inbenzopyrene exposed cells. Water Res. 2007;41:853-61.
Helleberg H, Tornqvist M. A new approach for measuring protein adducts from benzo[a]pyrene diolepoxide by high performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2000;14:1644-53.
Padros J, Pelletier E. In vivo formation of (+)-anti-benzo[a]pyrene diol-epoxide-plasma albumin adducts in fish. . Mar Environ Res. 2000;50:347-51.
Sugihara N, James MO. Binding of 3-hydroxybenzo[a]pyrene to bovine hemoglobin and albumin. J Biochem Mol Toxicol. 2003;17:239-47.
Behrend L, Henderson G, Zwacka RM. Reactive oxygen species in oncogenic transformation. Biochem Soc Trans. 2003;31(Pt 6):1441-4.
Gower JD, Wills ED. The oxidation of benzo[a]pyrene-7,8-dihydrodiol mediated by lipid peroxidation in the rat intestine and the effect of dietary lipids. Chem Biol Interact. 1987;63:63-74.
Ruan Q, Kim HY, Jiang H, Penning TM, Harvey RG, Blair IA. Quantification of benzo[a]pyrene diol epoxide DNA-adducts by stable isotope dilution liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2006;20:1369-80.
Neal MS, Zhu J, Holloway AC, Foster WG. Follicle growth is inhibited by benzo-[a]-pyrene, at concentrations representative of human exposure, in an isolated rat follicle culture assay. Hum Reprod. 2007;22:961-7.
Ramesh A, Inyang F, Lunstra DD, Niaz MS, Kopsombut P, Jones KM, et al. Alteration of fertility endpoints in adult male F-344 rats by subchronic exposure to inhaled benzo(a)pyrene. Exp Toxicol Pathol. 2008;60:269-80.
Jurisicova A, Taniuchi A, Li H, Shang Y, Antenos M, Detmar J, et al. Maternal exposure to polycyclic aromatic hydrocarbons diminishes murine ovarian reserve via induction of Harakiri. J Clin Invest. 2007;117:3971-8.
Tsai-Turton M, Nakamura BN, Luderer U. Induction of apoptosis by 9,10-dimethyl-1,2-benzanthracene in cultured preovulatory rat follicles is preceded by a rise in reactive oxygen species and is prevented by glutathione. Biol Reprod. 2007;77:442-51.
Smith TL, Merry ST, Harris DL, Joe Ford J, Ike J, Archibong AE, et al. Species-specific testicular and hepatic microsomal metabolism of benzo(a)pyrene, an ubiquitous toxicant and endocrine disruptor. Toxicol In Vitro. 2007;21:753-8.
Harris DL, Huderson AC, Niaz MS, Ford JJ, Archibong AE, Ramesh A. Comparative metabolism of benzo(a)pyrene by ovarian microsomes of various species. Environ Toxicol. 2009;24:603-9.
Wester PW, Muller JJ, Slob W, Mohn GR, Dortant PM, Kroese ED. Carcinogenic activity of benzo[a]pyrene in a 2 year oral study in Wistar rats. Food Chem Toxicol. 2011;50:927-35.
Shimada T. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet. 2006;21:257-76.
Simko P. Determination of polycyclic aromatic hydrocarbons in smoked meat products and smoke flavouring food additives. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;770:3-18.
Miranda CL, Chung WG, Wang-Buhler JL, Musafia-Jeknic T, Baird WM, Buhler DR. Comparative in vitro metabolism of benzo[a]pyrene by recombinant zebrafish CYP1A and liver microsomes from beta-naphthoflavone-treated rainbow trout. Aquat Toxicol. 2006;80:101-8.
Lijinsky W. The formation and occurrence of polynuclear aromatic hydrocarbons associated with food. Mutat Res. 1991;259:251-61.
Jiang H, Gelhaus SL, Mangal D, Harvey RG, Blair IA, Penning TM. Metabolism of benzo[a]pyrene in human bronchoalveolar H358 cells using liquid chromatography-mass spectrometry. Chem Res Toxicol. 2007;20:1331-41.
Sang H, Zhang L, Li J. Anti-benzopyrene-7,8-diol-9,10-epoxide induces apoptosis via mitochondrial pathway in human bronchiolar epithelium cells independent of the mitochondria permeability transition pore. Food Chem Toxicol. 2012;50:2417-23.
Compagnone D, Curini R, D’Ascenzo G, Del Carlo M, Montesano C, Napoletano S, et al. Neutral loss and precursor ion scan tandem mass spectrometry for study of activated benzopyrene-DNA adducts. Anal Bioanal Chem. 2011;401:1983-91.
Culp SJ, Gaylor DW, Sheldon WG, Goldstein LS, Beland FA. A comparison of the tumors induced by coal tar and benzo[a] pyrene in a 2-year bioassay. Carcinogenesis. 1998;19:117-24.
Tso P. Intestinal lipid absorption. In: Physiology of the gastrointestinal tract. New York: Raven Press; 1994. p. 867-1907.
Ozaki T, Nakagawara A. p53: the attractive tumor suppressor in the cancer research field. J Biomed Biotechnol. 2010;2011:ID603925. doi: 10.1155/2011/603925.
Matikainen T, Perez GI, Jurisicova A, Pru JK, Schlezinger JJ, Ryu HY, et al. Aromatic hydrocarbon receptor-driven Bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals. Nat Genet. 2001;28:355-60.
Perera F, Vishnevetsky J, Herbstman JB, Calafat AM, Xiong W, Rauh V, et al. Prenatal bisphenol a exposure and child behavior in an inner-city cohort. Environ Health Perspect. 2012;120:1190-4.
Perera F, Tang D, Whyatt R, Lederman SA, Jedrychowski W. DNA damage from polycyclic aromatic hydrocarbons measured by benzo[a]pyrene-DNA adducts in mothers and newborns from Northern Manhattan, the World Trade Center Area, Poland, and China. Cancer Epidemiol Biomarkers Prev. 2005;14:709-14.
Herbstman JB, Tang D, Zhu D, Qu L, Sjodin A, Li Z, et al. Prenatal exposure to polycyclic aromatic hydrocarbons, benzo[a] pyrene-DNA adducts, and genomic DNA methylation in cord blood. Environ Health Perspect. 2012;120:733-8.
Djinovic J, Popovic A, Jira W. Polycyclic aromatic hydrocarbons (PAHs) in different types of smoked meat products from Serbia. Meat Sci. 2008;80:449-56.
Wretling S, Eriksson A, Eskhult GA, Larsson B. Polycyclic aromatic hydrocarbons (PAHs) in Swedish smoked meat and fish. J Food Compos Analysis. 2010;23:264-72.
Comisión Europea. Regulación Nº 1881/2010 por la cual se fija el contenido máximo de determinados contaminantes en los productos alimenticios. [citado febrero de 2013]. Disponible en: http://europa.eu/legislation_summaries/food_safety/contamination_environmental_factors/l21290_es.htm.
Cavret S, Feidt C, Le Roux Y, Laurent F. Study of mammary epithelial role in polycyclic aromatic hydrocarbons transfer to milk. J Dairy Sci. 2005;88:67-70.
Comisión Europea. Opinion of the scientific committee on food on the risks to human health of polycyclic aromatic hydrocarbons in food. Brussels; 2002.
Comisión Europea. Reglamento (UE) N° 835/2011. Modifica el Reglamento (CE) no 1881/2006 por lo que respecta al contenido máximo de hidrocarburos aromáticos policíclicos en los productos alimenticios. Brussels; 2011 [citado febrero de 2013]. Disponible en: http://europa.eu/legislation_summaries/food_safety/contamination_environmental_factors/l21290_es.htm.
Downloads
Published
How to Cite
Issue
Section
License
Derechos de autor 2024 Universidad de Antioquia