Capacidad atrapadora de radicales oxígeno (ORAC) y fenoles totales de frutas y hortalizas de Colombia
DOI:
https://doi.org/10.17533/udea.penh.20310Palabras clave:
antioxidantes, sustancias protectoras, compuestos fenólicos, alimentos saludables, frutas, verdurasResumen
Antecedentes: las frutas y hortalizas poseen un alto potencial nutricional y terapéutico, debido a la presencia de diferentes fitoquímicos, como los compuestos fenólicos que han sido relacionados con la actividad antioxidante. Con el fin de determinar la capacidad antioxidante en matrices alimentarias, uno de los métodos más utilizados es la capacidad atrapadora de radicales de oxígeno (ORAC). Objetivo: estimar el contenido de fenoles totales y la capacidad atrapadora de radicales de oxígeno (ORAC) en frutas y hortalizas colombianas. Materiales y métodos: el material vegetal fue liofilizado, seguido de un proceso de extracción para separar la fracción hidrofílica y lipófilica. El contenido de fenoles totales se determinó en la fracción hidrofílica por el método de Folin-Ciocalteu. La actividad antioxidante fue evaluada en la fracción hidrofílica y lipofílica por ORAC. Resultados: el contenido de fenoles totales varió entre 30,5 a 10.584,7 mg/100 g en las frutas y 12,4 a 1.377,2 mg/100 g en las hortalizas. Los valores ORAC obtenidos variaron desde 685,7 a 207.850,4 μmol trolox/100 g en las frutas y 372,3 a 32.047,9 μmol trolox/100 g en las hortalizas. La curuba y espinaca presentaron mejores propiedades antioxidantes de las frutas y hortalizas analizadas, respectivamente; con diferencias estadísticamente significativas frente a los demás alimentos de su grupo (p<0,05). Conclusión: los productos hortofrutícolas colombianos presentan posibles propiedades nutracéuticas por el aporte de compuestos fenólicos con actividad antioxidante.
Descargas
Citas
Quideau S, Deffieux D, Douat-Casassus C, Pouységu L. Plant polyphenols: chemical properties biological activities, and synthesis. Angew Chem Int Ed. 2011;50:586-621.
Botero ML, Ricaurte S, Monsalve C, Rojano B. Capacidad reductora de 15 frutas tropicales. Scientia Technica. 2007;33:295-6.
Gaviria C, Ochoa C, Sánchez N, Medina C, Lobo M, Galeano P, et al. Actividad antioxidante e inhibición de la peroxidación lipídica de extractos de frutos de mortiño (Vaccinium meridionale Sw). Blacpma. 2009;8:519-28.
Ninfali P, Mea G, Giorgini S, Rocchi M, Bacchiocca M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br J Nutr. 2005;93:257-66.
Choksi RB, Boylston WH, Rabek JP, Widger WR, Papaconstantinou J. Oxidatively damaged proteins of heart mitochondrial electron transport complexes. Biochim Biophys Acta. 2004;1688:95-101.
Rojano B, Zapata K, Cortés F. Capacidad atrapadora de radicales libres de Passiflora mollissima (Kunth) L.H. Bailey (curuba). Rev Cubana Plantas Med. 2012;17:408-19.
Martínez-Lazcano JC, Boll-Woehrlen MC, Hernández-Melesio MA, Rubio-Osornio M, Sánchez-Mendoza MA, Ríos C, et al. Radicales libres y estrés oxidativo en las enfermedades neurodegenerativas. Mensaje Bioquim. 2010;34:43-59.
Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol. 2004;142:231-55.
Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agr Food Chem. 2005;53:4290-302.
Jacobo-Velázquez DA, Cisneros-Zevallos L. Correlations of antioxidant activity against phenolic content revisited: a new approach in data analysis for food and medicinal plants. J Food Sci. 2009;74:R107-R13.
US. Department of Agriculture, Agricultural Research Service. Oxygen radical absorbance capacity (ORAC) of selected foods, release 2. Beltsville: Nutrient Data Laboratory; 2010. 46p.
Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, et al. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL) of plasma and other biological and food samples. J Agr Food Chem. 2003;51:3273-9.
Jiménez-Álvarez D, Giuffrida F, Vanrobaeys F, Golay PA, Cotting C, Lardeau A, et al. High-throughput methods to assess lipophilic and hydrophilic antioxidant capacity of food extracts in vitro. J Agr Food Chem. 2008;56:3470-7.
Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Deemer EK. Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the solubility enhancer. J Agr Food Chem. 2002;50:1815-21.
Singleton Vl, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. AJEV. 1965;16:144-58.
Ou B, Hampsch-Woodill M, Prior R. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agr Food Chem. 2001;49:4619-26.
Naranjo M, Vélez T, Rojano B. Actividad antioxidante de café colombiano de diferentes calidades. Rev Cubana Plantas Med. 2011;16:164-73.
Dhawan K, Dhawan S, Sharma A. Passiflora: a review update. J Ethnopharmacol. 2004;94:1-23.
Vasco C, Ruales J, Kamal-Eldin A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem 2008;111:816-23.
Contreras-Calderón J, Calderón-Jaimes L, Guerra-Hernández E, García-Villanova B. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Res Intern. 2010; 44: 2047-53.
Rautenbach F, Venter I. Hydrophilic and lipophilic antioxidant capacity of commonly consumed South African fruits, vegetables, grains, legumes, fats/oils and beverages. J Food Compos Anal. 2010;23:753-61.
Hunter KJ, Fletcher JM. The antioxidant activity and composition of fresh, frozen, jarred and canned vegetables. Innovat Food Sci Emerg Tech. 2002;3:399-406.
Amin I, Zamaliah MM, Chin WF. Total antioxidant activity and phenolic content in selected vegetables. Food Chem. 2004;87:581-6.
Vallejo F, Tomás-Baeberán FA, García-Viguera C. Effect of climatic and sulphur fertilization conditions, on phenolic compounds and vitamin C, in the inflorescences of eight broccoli cultivars. Eur Food Res Tech. 2003;216:395-401.
McBride J. Can foods forestall aging? Agr Res. 1999;47:14-7.
Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agr Food Chem. 2004;52:4026-37.
Zulueta A, Esteve MJ, Frígola A. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem. 2009;114:310-6.
Amin I, Norazaidah Y, Emmyhanit KI. Antioxidant Activity and phenolic content of raw and blanching Amaranthus species. Food Chem. 2006;94:47-52.
Prior RL, Cap G, Martin A, Sofic E, McEwen J, O’Brien Cet al. Antioxidant capacity as influenced by total phenolic and anthocyanin content maturity and variety of Vaccinium species. J Agr Food Chem. 1998;46:2686-93.
Saura-Calixto F, Goñi I. Antioxidant capacity of the Spanish Mediterranean diet. Food Chem. 2006;94:442-7.
Quintero D, Escobar LM. Tabla de composición de alimentos. 2ed. Medellín: Centro de Atención Nutricional; 2001. 107p.
ICBF, Profamilia, Instituto Nacional de Salud, Universidad de Antioquia, Organización Panamericana de la Salud. Encuesta nacional de la situación nutricional en Colombia, 2005. Bogotá; 2006.
Epriliati I, Ginjom IR. Bioavailability of phytochemicals. In: Rao V, ed. Phytochemicals: a global perspective of their role in nutrition and health. Rijeka: In Tech, 2011. p. 401-28.
Martínez JR, Izquierdo M. La capacidad antioxidante de la dieta española, la rueda de los alimentos antioxidantes. Madrid: Sociedad Española de Dietética y Ciencias de los Alimentos; 2005. [citado noviembre de 2013]. Disponible en http://www.nutricion.org/recursos_y_utilidades/pdf/instrucciones_rueda_antiox.pdf
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Universidad de Antioquia