Estado del arte del gusto graso

Autores/as

DOI:

https://doi.org/10.17533/udea.penh.v22n1a07

Palabras clave:

gusto, sustitutos de grasa, grasa alimentaria, percepción del gusto, grasa, lípidos

Resumen

Antecedentes: existe evidencia científica sobre la detección y reconocimiento del sabor a grasa en las papilas gustativas, y sobre la relación entre las propiedades sensoriales de los lípidos en los alimentos, la nutrición y la salud pública. Objetivo: presentar los avances investigativos en la cualidad del sabor a grasa y las estrategias actuales para lograr el cumplimiento de las recomen­daciones del consumo de lípidos. Resultados: existen bases fisiológicas para afirmar que el sabor graso constituye uno de los gustos básicos, en los que están identificados sus posibles receptores y polimorfismos. La sensibilidad de estos receptores a los ácidos grasos se afecta por el consumo de grasa. La grasa dietaria se puede reducir cambiando los métodos de cocción y en la industria alimentaria usando reemplazantes de grasa. Conclusión: el gusto graso podría estar modulado por factores genéticos y ambientales. Existen variantes genéticas de los receptores y su sensibili­dad depende de la grasa dietaria. Los reemplazantes de grasa son una alternativa para reducir su aporte alimentario.

|Resumen
= 633 veces | PDF
= 458 veces| | XML
= 102 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Norma Constanza López Ortiz, Universidad Nacional de Colombia

Profesora asociada Universidad Nacional de Colombia sede Bogotá. MSc en Ciencias-Química Universidad Nacional de Colombia

Citas

OMS. Informe sobre la situación mundial de las enfermedades no transmisibles 2014. “Cumplimiento de las nueve metas mun¬diales relativas a las enfermedades no transmisibles: una responsabilidad compartida”. Ginebra; 2014. [Internet]. [Citado abril de 2018]. Disponible en: http://apps.who.int/iris/bitstream/10665/149296/1/

Pflanzer SB, de Felício PE. Moisture and fat content, marbling level and color of boneless rib cut from Nellore steers varying in maturity and fatness. Meat Sci. 2011;87:7-11. http://doi.org/10.1016/j.meatsci.2010.08.009

Méndez-Cid FJ, Lorenzo JM, Martínez S, Carballo J. Oxidation of edible animal fats. Comparison of the performance of diffe¬rent quantification methods and of a proposed new semi-objective colour scale-based method. Food Chem. 2017; 217:743-49. http://doi.org/10.1016/j.foodchem.2016.09.009

Guichard E, Galindo-Cuspinera V, Feron G. Physiological mechanisms explaining human differences in fat perception and liking in food spreads-a review. Trends Food Sci Tech. 2018;74:46-55. http://doi.org/10.1016/j.tifs.2018.01.010

Han P, Fark T, A de Wijk R, Roudnitzky N, Iannilli E, Seo HS, et al. Modulation of sensory perception of cheese attributes intensity and textura liking via ortho- and retro-nasal odors. Food Qual Prefer. 2019;73:1-7. http://doi.org/10.1016/j.foodqual.2018.11.019

Guichard E, Salles C, Morzel AM. Characterization of aroma compounds: Structure, physico-chemical and sensory properties. En: Guichard E, Salles C, Morzel AM, Le Bon A-M (eds.). Flavour, from food to perception. UK: Wiley Blackwell, Chichester; 2017, pp. 126-153.

Trautmann J, Gertheiss J, Wicke M, Mörlein D. How olfactory acuity affects the sensory assessment of boar fat: A proposal for quantification. Meat Sci. 2014;98: 255-62. http://doi.org/10.1016/j.meatsci.2014.05.037

Sawada R, Sato W, Minemoto K, Fushiki T. Hunger promotes the detection of high- fat food. Appetite. 2019;142:104377. http://doi.org/10.1016/j.appet.2019.104377

Tucker RM, Mattes RD, Running CA. Review Article Mechanisms and effects of “fat taste” in humans. Biochem Mol Biol Int. 2014;40:313-326. http://doi.org/10.1002/biof.1162

Besnard P, Passilly-Degrace P, Khan NA. Taste of fat: a sixth taste modality? Physiol Rev. 2016; 96:151-76. http://doi.org/10.1152/physrev.00002.2015

Galindo MM, Voigt N, Stein J, Van Lengerich J, Raguse JD, Hofmann T, et al. G Protein–Coupled Receptors in Human Fat Taste Perception. Chem Senses 2012;37:123-39. http://doi.org/10.1093/chemse/bjr069

Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, et al. Taste Preference for Fatty Acids Is Mediated by GPR40 and GPR120. Journal Neurosci. 2010; 30(25):8376-82. http://doi.org/10.1523/JNEUROSCI.0496-10.2010

Simons PJ, Kummer JA, Luiken JJ, Boon. Apical CD36 immunolocalization in human and porcine taste buds from circumvallate and foliate papillae. Acta Histochem. 2011; 113:839-43. http://doi.org/10.1016/j.acthis.2010.08.006

He Q, Zhu S, Lin M, Yang Q, Wei L, Zhang J, et al. Increased GPR120 level is associated with gestational diabetes Mellitus. Biochem Bioph Res Co. 2019;512:196-201. http://doi.org/10.1016/j.bbrc.2019.03.034

Dong-Soon I. FFA4 (GPR120) as a fatty acid sensor involved in appetite control, insulin sensitivity and inflammation regulation. Mol Aspects Med. 2018;64:92-108. http://doi.org/10.1016/j.mam.2017.09.001

Peña-Portillo GC. Oleogustus: El Sexto Sabor en la Industria Alimentaria. Ciencia y Tecnología de alimentos. 2019; 29(3):70-5. Disponible en: https://revcitecal.iiia.edu.cu/revista/index.php/RCTA/article/view/79/67

Stewart JE, Feinle-Bisset C, Keast RSJ. Fatty acid detection during food consumption and digestion: Associations with ingestive behavior and obesity. Prog Lipid Res. 2011;50(3):225-33. http://doi.org/10.1016/j.plipres.2011.02.002

Kawabata Y, Kawabata F, Nishimura S, Tabata S. Oral lipase activities and fat-taste receptors for fat-taste sensing in chickens. Bioch Bioph Res Co. 2018; 495:131-5. http://doi.org/10.1016/j.bbrc.2017.10.125

Brignot H, Feron G. Oral lipolysis and its association with diet and the perception and digestion of lipids: A systematic literature review. Arch Oral Biol. 2019;108:104550. http://doi.org/10.1016/j.archoralbio.2019.104550

Neyraud E, Cabaret S, Brignot H. The basal free fatty acid concentration in human saliva is related to salivary lipolytic activity. Sci rep-uk.2017;7:5969. http://doi.org/10.1038/s41598-017-06418-2

Moon JY, Kong TY, Jang HJ, Kang HC, Cho YY, Lee JY, et al. Simultaneous quantification of 18 saturated and unsaturated fatty acids and 7 sterols as their tert-butyldimethylsilyl derivatives in human saliva using gas chromatography-tandem mass spectro¬metry. J Chromatogr B. 2018;1092:114-21. http://doi.org/10.1016/j.jchromb.2018.06.003

Kulkarni BV, Wood KV, Mattes RD. Quantitative and qualitative analyses of human salivary NEFA with gas-chromatography and mass spectrometry. Front Physiol. 2012;3:328. https://doi.org/10.3389/fphys.2012.00328

Shen Y, Kennedy OB, Methven L. The effect of genotypical and phenotypical variation in taste sensitivity on liking of ice cream and dietary fat intake Food Qual Prefer. 2017;55:79-90. http://doi.org/10.1016/j.foodqual.2016.08.010

Karmous I, Plesník J, Khan AS, Serý O, Abid A, Mankai A, et al. Orosensory detection of bitter in fat-taster healthy and obese participants: Genetic polymorphism of CD36 and TAS2R38. Clin Nutr. 2018; 37:313-20. http://doi.org/10.1016/j.clnu.2017.06.004

Newman LP, Torres SJ, Bolhuis DP, Keast RSJ. The influence of a high-fat meal on fat tastethresholds.Appetite.2016;101:199-204. https://doi.org/10.1016/j.appet.2016.03.011

Keast RSJ. Effects of sugar and fat consumption on sweet and fat taste. Curr Opin Behav Sci. 2016;9:55-60. http://doi.org/10.1016/j.cobeha.2015.12.003

Stewart JE, Keast RSJ. Recent fat intake modulates fat taste sensitivity in lean and overweight subjects. Int J Obes. 2012;36:834 42.

Stewart JE, Seimon RV, Otto B, Keast RSJ, Clifton PM, Feinle-Bisset C. Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men. Am J Clin Nutr. 2011; 93:703-11. http://doi.org/10.3945/acn.110.007583

Running CA, Mattes RD, Tucker RM. Fat taste in humans: Sources of within- and between-subject variability. Prog Lipid Res. 2013; 52: 438-45. http://doi.org/10.1016/j.plipres.2013.04.007

Teo PS. Training of a Dutch and Malaysian sensory panel to assess intensities of basic tastes and fat sensation of commonly consumed foods. Food Qual Prefer. 2018;65:49-59. http://doi.org/10.1016/j.foodqual.2017;11.011

Martínez NR, López JA, Wall A, Jiménez JA, Angulo O. Oral fat perception is related with body mass index, preference and consumption of high-fat foods. Physiol Behav. 2014;129:36-42. http://doi.org/10.1016/j.physbeh.2014.02.010

Running CA, Mattes RD. Humans are more sensitive to the taste of linoleic and α-linolenic than oleic acid. Am J Physiol Gastrointest Liver Physiol. 2014;308:G442-49. http://doi.org/10.1152/ajpgi.00394.2014

Running CA, Craig BA, and Mattes RD. Oleogustus: The Unique Taste of Fat. Chem Senses. 2015;40(7):50716. https//doi.org/10.1093/chemse/bjv036

Running CA, Mattes RD. Different oral sensitivities to and sensations of short-, medium-and long-chain fatty acids in humans. Am J Physiol-Gastr L. 2014;307(3):G381-G389.

Harper. Bioquímica Ilustrada, 29.a ed. Mc Graw Hill Lange; 2013, 792 pp.

Wade LG. Química Orgánica, 7.a ed. México: Pearson Educación; 2012, 746 pp.

Wei W, Jin Q, Wang X. Human milk fat substitutes: Past achievements and current trends Progr Lipid Res. 2019;74:69-86. http://doi.org/10.1016/j.plipres.2019.02.001

Silencio JL, Lara G, Pérez Gil G, Montaño S, Ortiz RI, Castro MI, et. al. Ácidos grasos en el calostro y en la leche madura de mujeres mexicanas. Rev Mex Pediatr. 2012;79(1)5-11. Disponible en: https://www.medigraphic.com/pdfs/pediat/sp-2012/sp121b.pdf

Barreiro R, Díaz-Bao M, Cepeda A, Regal P. Fente Fatty acid composition of breast milk in Galicia (NW Spain): A cross-country comparison. Prostaglandins, Leukotrienes and Essential Fatty Acids. Prostaglandins Leukot Essent Fatty Acids 2018;135:102-14. http://doi.org/10.1016/j.plefa.2018.06.002

U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015 – 2020. Dietary Guidelines for Americans. 8th ed. December 2015. Disponible en: https://health.gov/dietaryguidelines/2015/guidelines/

Belc N, Smeu I, Macri A, Vallauri D, Flynn K. Reformulating foods to meet current scientific knowledge about salt, sugar and fats. Trends in Food Sci Tech. 2019; 84:25-8. http://doi.org/10.1016/j.tifs.2018.11.002

O´Sullivan MG. Nutritionally Optimised Low Fat Foods. En: A Handbook for Sensory and Consumer-Driven New Product Develop¬ment. Innovative Technologies for the Food and Beverage Industry. Woodhead Publishing Series in Food Science; 2017, pp.177-96. http://doi.org/10.1016/B978-0-08-100352-7.00009-9

BeMiller JN. Carbohydrate Chemistry for Food Scientists (3.a ed.) 2019-P. 323-35017 - Carbohydrate Nutrition, Dietary Fiber, Bulking Agents, and Fat Mimetics. http://doi.org/10.1016/B978-0-12-812069-9.00017-0

Razavi SM, Behrouzian F. Biopolymers for Food Design Handbook of Food Bioengineering. En: Grumezescu AM, Holban AM (eds.). Handbook of Food Bioengineering. Academic Press; 2018. pp. 65-94. http://doi.org/10.1016/B978-0-12-811449-0.00003-7

Ma Y, Cai CH, Wang J, WenSun D. Enzymatic hydrolysis of corn starch for producing fat mimetics. J Food Eng. 2006;73:297-303. http://doi.org/10.1016/j.jfoodeng.2005.01.023

Chen Y, She Y, Zhang R ,Wang J , Zhang X, Gou X. Use of starch-based fat replacers in foods as a strategy to reduce dietary intake of fat and risk of metabolic diseases. Food Sci Nutr. 2020; 8: 16-20. http://doi.org/10.1002/fsn3.1303

Gibis M, Schuh V, Weiss J. Effects of carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC) as fat replacers on the microstructure and sensory characteristics of fried beef patties. Food Hydrocolloid. 2015;45:236-46. http://doi.org/10.1016/j. foodhyd.2014.11.021

Ahmadi P, Tabibiazar M, Roufegarinejad L, Babazadehd A. Development of behenic acid-ethyl cellulose oleogel stabilized pickering emulsions as low calorie fat replacer. Int J Biol Macromol. 2020;150;974-81. http://doi.org/10.1016/j.ijbiomac.2019.10.205

Zheng Y, Zheng M, Ma Z, Xin B, Guo R, Xu X. Sugar Fatty Acid Esters. En: Ahmad M, Xu X (eds.). Polar lipids biology, chemistry, and technology. Academic Press and AOCS Press; 2015; pp. 215-43. http://doi.org/10.1016/B978-1-63067-044-3.50012-1

Chung C, Degner B, McClements DJ. Development of Reduced-calorie foods: Microparticulated whey proteins as fat mimetics in semi-solid food emulsions. Food Res Int. 2014;56:136-45. http://doi.org/10.1016/j.foodres.2013.11.034

Liu R, Wang L, Liu Y, WuT, Zhang M. Fabricating soy protein hydrolysate/xanthan gum as fat replacer in ice cream by combined enzymatic and heat-shearing treatment. Food Hydrocolloid. 2018;81:39-47. http://doi.org/10.1016/j.foodhyd.2018.01.031

Johnson ME. Cheese: Low- fat and reduced fat-cheese. In reference module in Food Science. En: Encyclopedia of Dairy Sciences; 2011, pp. 833-42. http://doi.org/10.1016/B978-0-08-100596-5.00672-7

Jalal H, Para PA, Ganguly S, Padhy A, Praveen PK, Wakchaure R. Fat replacers in meat: a brief review. Word Journal of Enineering Research and Technology. 2015;1:(2)16-21. Disponible en: https://www.wjert.org/archive show/2015/11/VOLUME-1-OCTOBER-ISSUE-2

Riosa R, Garzón R, Lannes SC, CM Rosella. Use of succinyl chitosan as fat replacer on cake formulations. LWT - Food Sci Tech. 2018;96:260-5. http://doi.org/10.1016/j.lwt.2018.05.041

ADA. Position of the American Dietetic Association: Fat Replacers. J Am Diet Assoc. 2005;105:266-75. http://doi.org/10.1016/j. jada.2004.12.011

McClements DJ. Reduced-Fat Foods: The Complex Science of Developing Diet-Based Strategies for Tackling Overweight and Obesity. American Society for Nutrition. Adv. Nutr. 2015. 6: 338S–52S. http://doi.org/10.3945/an.114.006999

Descargas

Publicado

2020-09-15

Cómo citar

López Ortiz, N. C. (2020). Estado del arte del gusto graso. Perspectivas En Nutrición Humana, 22(1), 89–98. https://doi.org/10.17533/udea.penh.v22n1a07

Número

Sección

Artículos de Revisión

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 > >> 

También puede {advancedSearchLink} para este artículo.