Study of Physical Phenomena in Mathematics Teachers Training. A STEM Education Experience

Authors

DOI:

https://doi.org/10.17533/udea.unipluri.20.1.02

Keywords:

STEM education, mathematical modelling, teacher training

Abstract

Research reports as a limiting factor the knowledge to recognize a connection between disciplines when students are supported, despite the interest of the teachers in integrating STEM education. In this respect, a STEM education experience was designed. This experience integrated mathematics in contexts of science (physics) and technology, through mathematical modelling. The analysis derives from a qualitative methodology with an interpretive approach. Content analysis is used to study the meanings of mathematics that are expanded in the analysis of the physical phenomenon model integrating thermometers and computational simulations. Results report that the experience allowed pre-service mathematics teachers to reflect on training issues. It evidences a level of preparation and potential that favors the integration of STEM education in their future professional performance. In addition, the scope and limitations of this experience are also reported.

|Abstract
= 1735 veces | PDF (ESPAÑOL (ESPAÑA))
= 1261 veces|

Downloads

Download data is not yet available.

Author Biographies

Jaime Andrés Carmona-Mesa, University of Antioquia

Master in Education and Bachelor of Mathematics and Physics, both degrees from the University of Antioquia. Professor at the Faculty of Education of the University of Antioquia in Medellín, Colombia. Among the main research interests is the initial training of mathematics teachers for the integration of technology and, recently, in the training of teachers in STEAM education.

 
 
 
 
 

Mónica Eliana Cardona Zapata, University of Antioquia

Graduated in Mathematics and Physics and Master in Education in Natural Sciences from the University of Antioquia. Professor at the Faculty of Education of the University of Antioquia. Member of the Research group Research Perspectives in Science Education -PiEnCias-. Among the main research interests is the initial training of physics teachers and the use of technology for the teaching of natural sciences.

Alexander Castrillón-Yepes, University of Antioquia

Student of Mathematics and Physics at the University of Antioquia, member of the MATHEMA research hotbed and of the Colombian Network of Mathematical Education Modeling (RECOMEM). Among his main research interests is Mathematical Modeling, research training and technologies in Mathematics Education.

References

Araya, R. (2016). STEM y Modelamiento Matemático. Cuadernos de Investigación y Formación En Educación Matemática, 11(15), 291–317.

Badri, M., Alnuaimi, A., Mohaidat, J., Al Rashedi, A., Yang, G. & Al Mazroui, K. (2016). My science class and expected career choices—a structural equation model of determinants involving Abu Dhabi high school students. International Journal of STEM Education, 3(1), 12. doi:10.1186/s40594-016-0045-0

Bautista, C. (2011). Proceso de la investigación cualitativa: Epistemología, metodología y aplicaciones. Bogotá: Manual Moderno.

Baker, C. K. & Galanti, T. M. (2017). Integrating STEM in elementary classrooms using model-eliciting activities: responsive professional development for mathematics coaches and teachers. International Journal of STEM Education, 4(1), 10. doi:10.1186/s40594-017-0066-3

Boulter, C. J. & Buckley, B. C. (2000). Constructing a Typology of Models for Science Education. In Developing Models in Science Education (pp. 41–57). Dordrecht: Springer Netherlands. doi: 10.1007/978-94-010-0876-1_3

Carmona-Mesa, J. A., Krugel, J. y Villa-Ochoa, J. A. (2021-en prensa). La formación de futuros profesores en tecnología. Aportes al debate actual sobre los Programas de Licenciatura en Colombia. In A. Richit & H. Oliveira (Eds.), Formação de professores e tecnologías digitais. Brazil: Livraria da Física. In press.

Carmona-Mesa, J. A., Arias-Suárez, J. y Villa-Ochoa, J. A. (2019). Formación inicial de profesores basados en proyectos para el diseño de lecciones STEAM. In E. Serna (Ed.), Revolución en la Formación y la Capacitación para el Siglo XXI (2a ed.) (Vol. I) (pp. 483–492). Medellín: Editorial Instituto Antioqueño de Investigación. doi: 10.5281/zenodo.3524356

Carmona-Mesa, J. A., Salazar, J. V. y Villa-Ochoa, J. A. (2018). Uso de calculadoras simples y video juegos en un curso de formación de profesores. Uni-pluriversidad, 18(1), 13-24. https://doi.org/10.17533/udea.unipluri.18.1.02

Carmona-Mesa, J. A. y Villa-Ochoa, J. A. (2017). Necesidades de formación en futuros profesores para el uso de tecnologías. Resultados de un estudio documental. Revista Paradigma, 38(1), 169–185. https://doi.org/10.37618/PARADIGMA.1011-2251.2017.p169–185.id606

Chesky, N. Z. & Wolfmeyer, M. R. (2015). Philosophy of STEM Education (Vol. 44). New York: Palgrave Macmillan US. doi: 10.1057/9781137535467

Davis, J. P., Chandra, V. & Bellocchi, A. (2019). Integrated STEM in Initial Teacher Education: Tackling Diverse Epistemologies (pp. 23–40). Suiza: Springer. doi: 10.1007/978-3-030-29489-2_2

Domènech-Casal, J. (2018). Aprendizaje Basado en Proyectos en el marco STEM. Componentes didácticas para la Competencia Científica. Ápice. Revista de Educación Científica, 2(2), 29–42. doi: 10.17979/arec.2018.2.2.4524

Domènech-Casal, J., Lope, S. y Mora, L. (2019). Qué proyectos STEM diseña y qué dificultades expresa el profesorado de secundaria sobre Aprendizaje Basado en Proyectos. Revista Eureka Sobre Enseñanza y Divulgación de Las Ciencias, 16(2), 2203. doi: 10.25267/Rev

Domínguez, A., De la Garza, J. & Zavala, G. (2015). Models and modelling in an integrated physics and mathematics course. In Mathematical modelling in education research and practice (pp. 513-522). Cham: Springer.English, L. D. (2016). STEM education K-12: perspectives on integration. International Journal of STEM Education, 3(1), 3. doi:10.1186/s40594-016-0036-1

Greca, I. M. (2018). La enseñanza STEAM en la Educación Primaria. In I. M. Greca & J. Meneses (Eds.), Proyectos STEAM para la Educación Primaria. Fundamentos y aplicaciones prácticas. (pp. 19–39). Dextra Editorial S.L.

Gueudet, G. & Trouche, L. (2009). Towards new documentation systems for mathematics teachers?. Educational studies in mathematics, 71(3), 199-218.

Guzey, S. S., Moore, T. J. & Harwell, M. (2016). Building Up STEM: An Analysis of Teacher-Developed Engineering Design-Based STEM Integration Curricular Materials. Journal of Pre-College Engineering Education Research (J-PEER), 6(1). doi: 10.7771/2157-9288.1129

Hsu, T. C., Chang, S. C. & Hung, Y. T. (2018). How to learn and how to teach computational thinking: Suggestions based on a review of the literature. Computers & Education, 126, 296-310.

Jaramillo, R. (2016). La calidad en la educación superior colombiana: ¿léxicos de deshumanización? Uni-pluriversidad, 16(2), 88–96. Recuperado de https://revistas.udea.edu.co/index.php/unip/article/view/328316

Kjeldsen, T. H. & Lützen, J. (2015). Interactions Between Mathematics and Physics: The History of the Concept of Function—Teaching with and About Nature of Mathematics. Science and Education, 24(5–6), 543–559. doi: 10.1007/s11191-015-9746-x

Kertil, M. & Gurel, C. (2016). Mathematical modeling: A bridge to STEM education. International Journal of Education in Mathematics Science and Technology, 4(1), 44-55.

Kilty, T. J. & Burrows, A. C. (2019). Secondary science preservice teachers’ perceptions of engineering: A learner analysis. Education Sciences, 9(1). doi: 10.3390/educsci9010029

Li, S., Ernst, J. V. & Williams, T. O. (2016). Supporting students with disabilities and limited English proficiency: STEM educator professional development participation and perceived utility. International Journal of STEM Education, 3(1), 2. doi:10.1186/s40594-016-0035-2

Malagón, J. F., Ayala, M. M. y Sandoval, S. (2011). El experimento en el aula. Comprensión de fenomenologías y construcción de magnitudes. Bogotá: Fondo Editorial.

Molina-Toro, J. F., Villa-Ochoa, J. A. y Suárez-Téllez, L. (2018). La modelación en el aula como un ambiente de experimentación-con-graficación-y-tecnología. Un estudio con funciones trigonométricas. Revista Latinoamericana de Etnomatemática, 11(1), 87–115.

Ortega, M., Puig, L. & Albarracín, L. (2019). The Influence of Technology on the Mathematical Modelling of Physical Phenomena. In Lines of Inquiry in Mathematical Modelling Research in Education (pp. 161–178). Springer Netherlands. doi: 10.1007/978-3-030-14931-4_9

Perrenet, J. & Zwaneveld, B. (2012). The many faces of the mathematical modeling cycle. Journal of Mathematical Modelling and Application, 1(6), 3-21.

Rodríguez, R. & Quiroz, S. (2016). El rol de la experimentación en la modelación matemática. Educación matemática, 28(3), 91-110.

Romero, Á. R. y Aguilar, Y. (2013). La experimentación y el desarrollo del pensamiento físico. Un análisis histórico y epistemológico con fines didácticos. Medellín: Editorial Universidad de Antioquia.

Shernoff, D. J., Sinha, S., Bressler, D. M. & Ginsburg, L. (2017). Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education. International Journal of STEM Education, 4(1), 13. Doi: 10.1186/s40594-017-0068-1

Siew, N., Amir, N. & Chong, C. (2015). The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science. SpringerPlus, 4(1), 8. Doi: 10.1186/2193-1801-4-8

Sjoquist, D. L. & Winters, J. V. (2015). The effect of Georgia’s HOPE scholarship on college major: a focus on STEM. IZA Journal of Labor Economics, 4(1), 15. Doi: 10.1186/s40172-015-0032-6

Tavor, D. (2019). Educación STEM en la Sudamérica hispanohablante. Latin-American Journal of Physics Education, 13(3), 1–7.

Villa-Ochoa, J. A. y Berrío, M. J. (2015). Mathematical Modelling and Culture. An Empirical Study. En Gloria A. Stillman, Werner Blum y Maria Sallet-Biembengut (eds.). Mathematical Modelling in Education Research and Practice: Cultural, Social and Cognitive Influences, chapter 19. New York: Springer.

Villa-Ochoa, J. A., González-Gómez, D. y Carmona-Mesa, J. A. (2018). Modelación y tecnología en el estudio de la tasa de variación instantánea en matemáticas. Formación Universitaria, 11(2), 25–34. doi:10.4067/S0718-50062018000200025

Villa-Ochoa, J. A. (2016). Aspectos de la modelación matemática en el aula de clase. El análisis de modelos como ejemplo. In J. Arrieta y L. Díaz (Eds.), Investigaciones latinoamericanas de modelación de la matemática educativa (pp. 109–138). Barcelona: Gedisa.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L. & Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127–147. doi: 10.1007/s10956-015-9581-5

Published

2020-06-30

How to Cite

Carmona-Mesa, J. A., Cardona Zapata, M. E., & Castrillón-Yepes, A. (2020). Study of Physical Phenomena in Mathematics Teachers Training. A STEM Education Experience. Uni-Pluriversidad, 20(1), 18–38. https://doi.org/10.17533/udea.unipluri.20.1.02