Study of Physical Phenomena in Mathematics Teachers Training. A STEM Education Experience
DOI:
https://doi.org/10.17533/udea.unipluri.20.1.02Keywords:
STEM education, mathematical modelling, teacher trainingAbstract
Research reports as a limiting factor the knowledge to recognize a connection between disciplines when students are supported, despite the interest of the teachers in integrating STEM education. In this respect, a STEM education experience was designed. This experience integrated mathematics in contexts of science (physics) and technology, through mathematical modelling. The analysis derives from a qualitative methodology with an interpretive approach. Content analysis is used to study the meanings of mathematics that are expanded in the analysis of the physical phenomenon model integrating thermometers and computational simulations. Results report that the experience allowed pre-service mathematics teachers to reflect on training issues. It evidences a level of preparation and potential that favors the integration of STEM education in their future professional performance. In addition, the scope and limitations of this experience are also reported.
Downloads
References
Araya, R. (2016). STEM y Modelamiento Matemático. Cuadernos de Investigación y Formación En Educación Matemática, 11(15), 291–317.
Badri, M., Alnuaimi, A., Mohaidat, J., Al Rashedi, A., Yang, G. & Al Mazroui, K. (2016). My science class and expected career choices—a structural equation model of determinants involving Abu Dhabi high school students. International Journal of STEM Education, 3(1), 12. doi:10.1186/s40594-016-0045-0
Bautista, C. (2011). Proceso de la investigación cualitativa: Epistemología, metodología y aplicaciones. Bogotá: Manual Moderno.
Baker, C. K. & Galanti, T. M. (2017). Integrating STEM in elementary classrooms using model-eliciting activities: responsive professional development for mathematics coaches and teachers. International Journal of STEM Education, 4(1), 10. doi:10.1186/s40594-017-0066-3
Boulter, C. J. & Buckley, B. C. (2000). Constructing a Typology of Models for Science Education. In Developing Models in Science Education (pp. 41–57). Dordrecht: Springer Netherlands. doi: 10.1007/978-94-010-0876-1_3
Carmona-Mesa, J. A., Krugel, J. y Villa-Ochoa, J. A. (2021-en prensa). La formación de futuros profesores en tecnología. Aportes al debate actual sobre los Programas de Licenciatura en Colombia. In A. Richit & H. Oliveira (Eds.), Formação de professores e tecnologías digitais. Brazil: Livraria da Física. In press.
Carmona-Mesa, J. A., Arias-Suárez, J. y Villa-Ochoa, J. A. (2019). Formación inicial de profesores basados en proyectos para el diseño de lecciones STEAM. In E. Serna (Ed.), Revolución en la Formación y la Capacitación para el Siglo XXI (2a ed.) (Vol. I) (pp. 483–492). Medellín: Editorial Instituto Antioqueño de Investigación. doi: 10.5281/zenodo.3524356
Carmona-Mesa, J. A., Salazar, J. V. y Villa-Ochoa, J. A. (2018). Uso de calculadoras simples y video juegos en un curso de formación de profesores. Uni-pluriversidad, 18(1), 13-24. https://doi.org/10.17533/udea.unipluri.18.1.02
Carmona-Mesa, J. A. y Villa-Ochoa, J. A. (2017). Necesidades de formación en futuros profesores para el uso de tecnologías. Resultados de un estudio documental. Revista Paradigma, 38(1), 169–185. https://doi.org/10.37618/PARADIGMA.1011-2251.2017.p169–185.id606
Chesky, N. Z. & Wolfmeyer, M. R. (2015). Philosophy of STEM Education (Vol. 44). New York: Palgrave Macmillan US. doi: 10.1057/9781137535467
Davis, J. P., Chandra, V. & Bellocchi, A. (2019). Integrated STEM in Initial Teacher Education: Tackling Diverse Epistemologies (pp. 23–40). Suiza: Springer. doi: 10.1007/978-3-030-29489-2_2
Domènech-Casal, J. (2018). Aprendizaje Basado en Proyectos en el marco STEM. Componentes didácticas para la Competencia Científica. Ápice. Revista de Educación Científica, 2(2), 29–42. doi: 10.17979/arec.2018.2.2.4524
Domènech-Casal, J., Lope, S. y Mora, L. (2019). Qué proyectos STEM diseña y qué dificultades expresa el profesorado de secundaria sobre Aprendizaje Basado en Proyectos. Revista Eureka Sobre Enseñanza y Divulgación de Las Ciencias, 16(2), 2203. doi: 10.25267/Rev
Domínguez, A., De la Garza, J. & Zavala, G. (2015). Models and modelling in an integrated physics and mathematics course. In Mathematical modelling in education research and practice (pp. 513-522). Cham: Springer.English, L. D. (2016). STEM education K-12: perspectives on integration. International Journal of STEM Education, 3(1), 3. doi:10.1186/s40594-016-0036-1
Greca, I. M. (2018). La enseñanza STEAM en la Educación Primaria. In I. M. Greca & J. Meneses (Eds.), Proyectos STEAM para la Educación Primaria. Fundamentos y aplicaciones prácticas. (pp. 19–39). Dextra Editorial S.L.
Gueudet, G. & Trouche, L. (2009). Towards new documentation systems for mathematics teachers?. Educational studies in mathematics, 71(3), 199-218.
Guzey, S. S., Moore, T. J. & Harwell, M. (2016). Building Up STEM: An Analysis of Teacher-Developed Engineering Design-Based STEM Integration Curricular Materials. Journal of Pre-College Engineering Education Research (J-PEER), 6(1). doi: 10.7771/2157-9288.1129
Hsu, T. C., Chang, S. C. & Hung, Y. T. (2018). How to learn and how to teach computational thinking: Suggestions based on a review of the literature. Computers & Education, 126, 296-310.
Jaramillo, R. (2016). La calidad en la educación superior colombiana: ¿léxicos de deshumanización? Uni-pluriversidad, 16(2), 88–96. Recuperado de https://revistas.udea.edu.co/index.php/unip/article/view/328316
Kjeldsen, T. H. & Lützen, J. (2015). Interactions Between Mathematics and Physics: The History of the Concept of Function—Teaching with and About Nature of Mathematics. Science and Education, 24(5–6), 543–559. doi: 10.1007/s11191-015-9746-x
Kertil, M. & Gurel, C. (2016). Mathematical modeling: A bridge to STEM education. International Journal of Education in Mathematics Science and Technology, 4(1), 44-55.
Kilty, T. J. & Burrows, A. C. (2019). Secondary science preservice teachers’ perceptions of engineering: A learner analysis. Education Sciences, 9(1). doi: 10.3390/educsci9010029
Li, S., Ernst, J. V. & Williams, T. O. (2016). Supporting students with disabilities and limited English proficiency: STEM educator professional development participation and perceived utility. International Journal of STEM Education, 3(1), 2. doi:10.1186/s40594-016-0035-2
Malagón, J. F., Ayala, M. M. y Sandoval, S. (2011). El experimento en el aula. Comprensión de fenomenologías y construcción de magnitudes. Bogotá: Fondo Editorial.
Molina-Toro, J. F., Villa-Ochoa, J. A. y Suárez-Téllez, L. (2018). La modelación en el aula como un ambiente de experimentación-con-graficación-y-tecnología. Un estudio con funciones trigonométricas. Revista Latinoamericana de Etnomatemática, 11(1), 87–115.
Ortega, M., Puig, L. & Albarracín, L. (2019). The Influence of Technology on the Mathematical Modelling of Physical Phenomena. In Lines of Inquiry in Mathematical Modelling Research in Education (pp. 161–178). Springer Netherlands. doi: 10.1007/978-3-030-14931-4_9
Perrenet, J. & Zwaneveld, B. (2012). The many faces of the mathematical modeling cycle. Journal of Mathematical Modelling and Application, 1(6), 3-21.
Rodríguez, R. & Quiroz, S. (2016). El rol de la experimentación en la modelación matemática. Educación matemática, 28(3), 91-110.
Romero, Á. R. y Aguilar, Y. (2013). La experimentación y el desarrollo del pensamiento físico. Un análisis histórico y epistemológico con fines didácticos. Medellín: Editorial Universidad de Antioquia.
Shernoff, D. J., Sinha, S., Bressler, D. M. & Ginsburg, L. (2017). Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education. International Journal of STEM Education, 4(1), 13. Doi: 10.1186/s40594-017-0068-1
Siew, N., Amir, N. & Chong, C. (2015). The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science. SpringerPlus, 4(1), 8. Doi: 10.1186/2193-1801-4-8
Sjoquist, D. L. & Winters, J. V. (2015). The effect of Georgia’s HOPE scholarship on college major: a focus on STEM. IZA Journal of Labor Economics, 4(1), 15. Doi: 10.1186/s40172-015-0032-6
Tavor, D. (2019). Educación STEM en la Sudamérica hispanohablante. Latin-American Journal of Physics Education, 13(3), 1–7.
Villa-Ochoa, J. A. y Berrío, M. J. (2015). Mathematical Modelling and Culture. An Empirical Study. En Gloria A. Stillman, Werner Blum y Maria Sallet-Biembengut (eds.). Mathematical Modelling in Education Research and Practice: Cultural, Social and Cognitive Influences, chapter 19. New York: Springer.
Villa-Ochoa, J. A., González-Gómez, D. y Carmona-Mesa, J. A. (2018). Modelación y tecnología en el estudio de la tasa de variación instantánea en matemáticas. Formación Universitaria, 11(2), 25–34. doi:10.4067/S0718-50062018000200025
Villa-Ochoa, J. A. (2016). Aspectos de la modelación matemática en el aula de clase. El análisis de modelos como ejemplo. In J. Arrieta y L. Díaz (Eds.), Investigaciones latinoamericanas de modelación de la matemática educativa (pp. 109–138). Barcelona: Gedisa.
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L. & Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127–147. doi: 10.1007/s10956-015-9581-5
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 University of Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who have publications in this Journal accept the following terms:
- The content of each article is the responsibility of its authors
- The author(s) preserve(s) the moral rights over the article and transfer(s) the patrimonial rights to the University of Antioquia, which can publish it or distribute electronic copies, as well as include it in indexing services, directories or national and international Open Access data bases, under the Creative Commons Attribution License (CC BY-NC-ND).
- The author(s) should sign a declaration of transfer of economic rights to the University of Antioquia, after the acceptance of the manuscript.
- Authors are allowed and advised to disseminate their work through the Internet (eg, institutional telematic archives or their website) before and during the submission process. That can produce interesting exchanges and increase citations of the published work.
- The author(s) has (have) the responsibility to arrange and get the necessary permissions to reproduce any material protected by copyright.