Proteins associated with the metabolism of total body iron
DOI:
https://doi.org/10.17533/udea.penh.v18n1a08Keywords:
Iron, iron-binding proteins, genetic expression, oxidation-reduction, homeostasis, iron deficiencyAbstract
Background: Iron is an essential nutrient well studied for its role in human health, and much evidence exists regarding its metabolism, functions, interactions, and regulations. However, studies and analyses that have been done are often based on specific proteins and few integrate into a single text the characteristics of multiple proteins related to total body iron metabolism. Objective: Explore in-depth the molecular, metabolic, and modulation aspects of proteins that participate in iron homeostasis and related interactions. Materials and methods: A literature review was completed using scientific databases in conjunction with a search for related scientific articles published between 2006 and 2016. Results: Homeostasis of total body iron stores is a complex process that is highly regulated by various molecules that participate in an integrated manner in iron metabolism. In recent years, new proteins have been discovered regarding the humoral and cellular control of iron, some of which are also involved in the transport of other nutrients. Additionally, these proteins involve participation from various organs, tissues, and systems. This review includes proteins responsible for facilitating biological utilization of the nutrient, as well as those that protect cells from toxicity of this mineral.
Downloads
References
Goforth JB, Anderson SA, Nizzi CP, Eisenstein RS. Multiple determinants within iron-responsive elements dictate iron regulatory protein binding and regulatory hierarchy. RNA. 2009;16:154-69.
Campillos M, Cases I, Hentze MW, Sanchez M. SIREs: searching for iron-responsive elements. Nucleic Acids Res. 2010;38:W360-7.
GenBank. Full=Cytoplasmic aconitate hydratase; Short=Aconitase; AltName: Full=Citrate hydro-lyase; AltName: Full=Ferritin repressor protein; AltName: Full=Iron regulatory protein 1; Short=IRP1; AltName: Full=Iron-responsive element-binding protein 1; Short=IRE-BP UniProtKB/Swiss-Prot: Q01059.1 [citado mayo de 2015]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/Q01059.1
Kaptain S, Downey WE, Tang C, Philpott A, Haile D, Orloff DG, et al. A regulated RNA binding protein also possesses aconitase activity. Proc Natl Acad Sci. USA. 1991;88:10109-13.
Xu X, Persson HL, Richardson DR. Molecular pharmacology of the interaction of anthracyclines with iron. Mol Pharmacol. 2005;68:261-71.
Phillips JD, Kinikini DV, Yu Y, Guo B, Leibold EA. Differential regulation of IRP1 and IRP2 by nitric oxide in rat hepatoma cells. Blood. 1996;87:2983-92.
Galy B, Ferring-Appel D, Becker C, Gretz N, Gröne H-J, Schümann K, et al. Iron regulatory proteins control a mucosal block to intestinal iron absorption. Cell Rep. 2013;3:844-57.
GenBank. RecName: Full=Iron-responsive element-binding protein 2; Short=IRE-BP 2; AltName: Full=Iron regulatory protein 2; Short=IRP2. UniProtKB/Swiss-Prot: P48200.3. [citado mayo de 2015]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/P48200.3
MacKenzie EL, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10:997-1030.
Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochem J. 2011;434:365-81.
Anderson GJ, Vulpe CD. Mammalian iron transport. Cell Mol Life Sci. 2009;66:3241-61.
Piccinelli P, Samuelsson T. Evolution of the iron-responsive element. RNA. 2007;13:952-66.
Linder MC. Mobilization of stored iron in mammals: A review. Nutrients. 2013;5:4022-50.
Montalbetti N, Simonin A, Simonin C, Awale M, Reymond JL, Hediger MA. Discovery and characterization of a novel noncompetitive inhibitor of the divalent metal transporter DMT1/SLC11A2. Biochem Pharmacol. 2015; 96:216-24.
GenBank. RecName: Full=Proton-coupled folate transporter; AltName: Full=G21; AltName: Full=Heme carrier protein 1; Alt-Name: Full=PCFT/HCP1; AltName: Full=Solute carrier family 46 member 1. UniProtKB/Swiss-Prot: Q96NT5.1. [citado mayo de 2015]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/Q96NT5.1
GenBank. SLC11A2 protein [Homo sapiens]. GenBank: AAH02592.1. 2005. [citado mayo de 2015]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/AAH02592.1
Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, et al. Identification of an intestinal heme transporter. Cell. 2005;122:789-801.
Gropper S, Smith J. Essential trace and ultratrace minerals. In: Sareen S, ed. Advanced nutrition and human metabolism. 6 ed. Belmont: Wadsworth Cengage Learning; 2013. p. 484-5.
Le Blanc S, Garrick MD, Arredondo M. Heme carrier protein 1 transports heme and is involved in heme-Fe metabolism. Am J Physiol. Cell Physiol. 2012;302:C1780-5.
Khan AA, Quigley JG. Heme and FLVCR-related transporter families SLC48 and SLC49. Mol Aspects Med. 2013;34:669-82.
GenBank. RecName: Full=Heme oxygenase 1; Short=HO-. UniProtKB/Swiss-Prot: P09601.1. [citado mayo de 2015]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/P09601.1
GenBank. RecName: Full=Heme oxygenase 2; Short=HO-2. UniProtKB/Swiss-Prot: P30519.2. [citado mayo de 2015]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/P30519.2
West AR, Oates PS. Mechanisms of heme iron absorption: Current questions and controversies. World J Gastroenterol. 2008;14:4101-10.
Ayuso P, Agúndez JAG, Alonso-Navarro H, Martínez C, Benito-León J, Ortega-Cubero S, et al. Heme oxygenase 1 and 2 common genetic variants and risk for essential tremor. Medicine. 2015;94:e968.
Doré S, Sampei K, Goto S, Alkayed NJ, Guastella D, Blackshaw S, et al. Heme oxygenase-2 is neuroprotective in cerebral ischemia. Mol Med. 1999;5:656-63.
Ma B, Day JP, Phillips H, Slootsky B, Tolosano E, Doré S. Deletion of the hemopexin or heme oxygenase-2 gene aggravates brain injury following stroma-free hemoglobin-induced intracerebral hemorrhage. J Neuroinflammation. 2016;13:26.
Garrick MD. Human iron transporters. Genes Nutr. 2011;6:45-54.
Mackenzie B, Takanaga H, Hubert N, Rolfs A, Hediger MA. Functional properties of multiple isoforms of human divalent metal-ion transporter 1 (DMT1). Biochem J. 2007;403:59-69.
Kühn LC. Iron regulatory proteins and their role in controlling iron metabolism. Metallomics. 2015;7:232-43.
Camaschella C, Pagani A. Iron and erythropoiesis: a dual relationship. Int J Hematol. 2011;93:21-6.
Iolascon A, Camaschella C, Pospisilova D, Piscopo C, Tchernia G, Beaumont C. Natural history of recessive inheritance of DMT1 mutations. J Pediatr. 2008;152:136-9.
GenBank. transferrin [Homo sapiens]. GenBank: ABI97197.1. 2006. [citado mayo de 2015]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/ABI97197.1
Gkouvatsos K, Papanikolaou G, Pantopoulos K. Regulation of iron transport and the role of transferrin. Biochim Biophys Acta. 2011;188-202.
Byrne CD. Fatty liver: role of inflammation and fatty acid nutrition. Prostaglandins Leukot Essent Fat Acids. 2010;82:265-71.
Yang R, Zhou Z, Sun G, Gao Y, Xu J. Ferritin, a novel vehicle for iron supplementation and food nutritional factors encapsulation. Trends Food Sci Technol. 2015;44:189-200.
Li L, Fang CJ, Ryan JC, Niemi EC, Lebron JA, Bjorkman PJ, et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci. 2010;107:3505-10.
Arosio P, Levi S. Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim Biophys Acta. 2010;1800:783-92.
Wachter A. Gene regulation by structured mRNA elements. Trends Genet. 2014;30:172-81.
Aydemir F, Jenkitkasemwong S, Gulec S, Knutson MD. Iron loading increases ferroportin heterogeneous nuclear RNA and mRNA levels in murine J774 macrophages. J Nutr. 2009;139:434-8.
Rochette L, Gudjoncik A, Guenancia C, Zeller M, Cottin Y, Vergely C. The iron-regulatory hormone hepcidin: A possible therapeutic target? Pharmacol. Ther. 2015;146:35-52.
Watt RK. The many faces of the octahedral ferritin protein. Biometals. 2011;24:489-500.
Girelli D, Corrocher R, Bisceglia L, Olivieri O, De Franceschi L, Zelante L, et al. Molecular basis for the recently described hereditary hyperferritinemia- cataract syndrome: a mutation in the iron-responsive element of ferritin L-subunit gene (the «Verona mutation»). Blood. 1995;86:4050-3.
Lenzhofer M, Schroedl F, Trost A, Kaser-Eichberger A, Wiedemann H, Strohmaier C, et al. Aqueous humor ferritin in hereditary hyperferritinemia cataract syndrome. Optom Vis Sci. 2015;92:S40-7.
GenBank. Full=Transferrin receptor protein 1; Short=TR; Short=TfR; Short=TfR1; Short=Trfr; AltName: Full=T9; AltName: Full=p90; AltName: CD_antigen=CD71; Contains: RecName: Full=Transferrin receptor protein 1, serum form; Short=sTfR.NCBI Reference Sequence: NP_001121620.1 2015. [citado mayo de 2015]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/NP_001121620.1
Beaumont C, Vaulont S. Iron homeostasis. In: Beaumont C, Beris P, Beuzard Y, Brugnara C, eds. ESH Handbook on disorders of iron metabolism. París: European School of Haematology; 2009. p. 488-511.
Yersin A, Osada T, Ikai A. Exploring transferrin-receptor interactions at the single-molecule level. Biophys J. 2008;94:230-40.
Pagani A, Vieillevoye M, Nai A, Rausa M, Ladli M, Lacombe C, et al. Regulation of cell surface transferrin receptor-2 by irondependent cleavage and release of a soluble form. Haematologica. 2015;100:458-65.
Worthen CA, Enns CA. The role of hepatic transferrin receptor 2 in the regulation of iron homeostasis in the body. Front Pharmacol. 2014;5:34.
GenBank. HFE [Homo sapiens]. GenBank: CAB07442.1. 2008. [citado mayo de 2015]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/CAB07442.1
Aisen P. Transferrin receptor 1. Int J Biochem Cell Biol. 2004;36:2137-43.
Balesaria S, Hanif R, Salama M, Raja K, Bayele HK, McArdle H, et al. Fetal iron levels are regulated by maternal and fetal Hfe genotype and dietary iron. Haematologica. 2012;97:671-9.
Silva B, Ferreira J, Santos V, Baldaia C, Serejo F, Faustino P. The soluble form of HFE protein regulates hephaestin mRNA expression in the duodenum through an endocytosis-dependent mechanism. Biochim Biophys Acta. Mol. Basis Dis. 2014;1842:2298-305.
GenBank. SLC40A1 solute carrier family 40 (iron-regulated transporter), member 1 [Homo sapiens]. GenBank: CAB07442.12015. [citado mayo de 2015]. Disponible en: http://www.ncbi.nlm.nih.gov/gene/30061
Rice AE, Mendez MJ, Hokanson CA, Rees DC, Bjorkman PJ. Investigation of the biophysical and cell biological properties of ferroportin, a multipass integral membrane protein iron exporter. J Mol Biol. 2009;386:717-32.
Cianetti L, Gabbianelli M, Sposi NM. Ferroportin and erythroid cells: an update. Adv Hematol. 2010; Article ID 404173. Doi: http://dx.doi.org/10.1155/2010/404173. [citado mayo de 2015]. Disponible en: http://www.hindawi.com/journals/ah/2010/404173/
Liu X-B, Yang F, Haile DJ. Functional consequences of ferroportin 1 mutations. Blood Cells Mol Dis. 2005;35:33-46.
De Domenico I, Ward DM, Musci G, Kaplan J. Evidence for the multimeric structure of ferroportin. Blood. 2007;109:2205-9.
Le Gac G, Ka C, Joubrel R, Gourlaouen I, Lehn P, Mornon J-P, et al. Structure-function analysis of the human ferroportin iron exporter (SLC40A1): Effect of hemochromatosis type 4 disease mutations and identification of critical residues. Hum Mutat. 2013;34:1371-80.
Ward DM, Kaplan J. Ferroportin-mediated iron transport: Expression and regulation. Biochim Biophys Acta. Mol Cell Res. 2012;1823:1426-33.
De Domenico I, Ward DM, Langelier C, Vaughn MB, Nemeth E, Sundquist WI, et al. The molecular mechanism of hepcidinmediated ferroportin down-regulation. Mol Biol Cell. 2007;18:2569-78.
De Domenico I, Lo E, Ward DM, Kaplan J. Hepcidin-induced internalization of ferroportin requires binding and cooperative interaction with Jak2. Proc Natl Acad Sci. 2009;106:3800-5.
De Domenico I, Vaughn MB, Li L, Bagley D, Musci G, Ward DM, et al. Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome. EMBO J. 2006;25:5396-404.
Ganz T. The role of hepcidin in iron homeostasis. In: Yehuda S, Mostofsky DI, eds. Iron deficiency and overload: from basic biology to clinical medicine. New York: Humana Press; 2010. p. 51-64.
Hintze KJ, McClung JP. Hepcidin: a critical regulator of iron metabolism during hypoxia. Adv Hematol. 2011;2011:1-7.
Li YQ, Bai B, Cao XX, Yan H, Zhuang GH. Ferroportin 1 and hephaestin expression in BeWo cell line with different iron treatment. Cell Biochem Funct. 2012;30:249-55.
Vashchenko G, MacGillivray RTA. Multi-Copper oxidases and human iron metabolism. Nutrients. 2013;5:2289-313.
Ganz T. Hepcidin and its role in regulating systemic iron metabolism. Hematology. Am Soc Hematol Educ Progr. 2006;29-35. [citado mayo de 2015]. Disponible en: http://asheducationbook.hematologylibrary.org/content/2006/1/29.full.pdf+html
Fleming MD. The regulation of hepcidin and its effects on systemic and cellular iron metabolism. Hematology. Am Soc Hematol Educ Progr. 2008;151-8. [citado mayo de 2015]. Disponible en: http://asheducationbook.hematologylibrary.org/content/2008/1/151.long
Ganz T. Molecular control of iron transport. J Am Soc Nephrol. 2007;18:394-400.
De Domenico I, Ward DM, Kaplan J. Hepcidin and ferroportin: the new players in iron metabolism. Semin Liver Dis. 2011;31:272-9.
Palaneeswari M S, Ganesh M, Karthikeyan T, Devi AJM, Mythili S V. Hepcidin–Minireview. J Clin Diagn Res. 2013;7:1767-71.
Rishi G, Wallace DF, Subramaniam VN. Hepcidin: regulation of the master iron regulator. Biosci Rep. 2015;35:1-12.
Kautz L, Jung G, Valore E V, Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46:678-84.
Balesaria S, Ramesh B, McArdle H, Bayele HK, Srai SK. Divalent metal-dependent regulation of hepcidin expression by MTF-1. FEBS Lett. 2010;584:719-25.
Przybyszewska J, Zekanowska E. The role of hepcidin, ferroportin, HCP1, and DMT1 protein in iron absorption in the human digestive tract. Prz Gastroenterol. 2014;9:208-13.
Lane DJR, Bae DH, Merlot AM, Sahni S, Richardson DR. Duodenal cytochrome b (DCYTB) in iron metabolism: An update on function and regulation. Nutrients. 2015;7:2274-96.
GenBank. RecName: Full=Hemojuvelin; AltName: Full=Hemochromatosis type 2 protein; AltName: Full=RGM domain family member C; Flags: Precursor UniProtKB/Swiss-Prot: Q6ZVN8. [citado mayo de 2015]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/Q6ZVN8.1
Chifman J, Laubenbacher R, Torti S V. A systems biology approach to iron metabolism. In: Corey SJ, Kimmel M, Leonard JN, eds. A systems biology approach to iron metabolism. New York: Springer; 2014. p. 201-25.
Esquivia CM, Acevedo P. Hepcidina: su interacción con la hemojuvelina y su aporte en el diagnóstico de las enfermedades relacionadas con el metabolismo del hierro. Univ. Médica. 2012;53:382-94.
Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008;8:502-11.
Zhao N, Maxson JE, Zhang RH, Wahedi M, Enns CA, Zhang AS. Neogenin facilitates the induction of hepcidin expression by hemojuvelin in the liver. J Biol Chem. bc.M116.721191. 2016. [citado febrero de 2016]. Disponible en: http://www.jbc.org/content/early/2016/04/12/jbc.M116.721191.long
GenBank. Full=Ceruloplasmin; AltName: Full=Ferroxidase; Flags: Precursor . UniProtKB/Swiss-Prot: P00450.1. 2015. [citado agosto de 2015]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/P00450.1
Bento I, Peixoto C, Zaitsev VN, Lindley PF. Ceruloplasmin revisited: structural and functional roles of various metal cationbinding sites. Acta Crystallogr D Biol Crystallogr. 2007;63:240-8.
Maio N, Polticelli F, De Francesco G, Rizzo G, Bonaccorsi di Patti MC, et al. Role of external loops of human ceruloplasmin in copper loading by ATP7B and Ccc2p. J Biol Chem. 2010;285:20507-13.
Miyajima H. Aceruloplasminemia. Neuropathology. 2015;35:83-90.
Das D, Tapryal N, Goswami SK, Fox PL, Mukhopadhyay CK. Regulation of ceruloplasmin in human hepatic cells by redox active copper: identification of a novel AP-1 site in the ceruloplasmin gene. Biochem J. 2007;402:135-41.
Chen H, Attieh ZK, Syed BA, Kuo Y, Stevens V, Fuqua BK, et al. Identification of Zyklopen, a new member of the vertebrate multicopper ferroxidase family, and characterization in rodents and human cells. J Nutr. 2010;140:1728-35.
GenBank. hephaestin [Homo sapiens]. GenBank: CAC35365.2. 2008. [citado agosto de 2015]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/CAC35365.2
Wessling-Resnick M. Iron imports. III. Transfer of iron from the mucosa into circulation. Am J Physiol Gastrointest Liver Physiol. 2006;290:G1-6.
Anderson GJ, Frazer DM, McKie AT, Vulpe CD. The ceruloplasmin homolog hephaestin and the control of intestinal iron absorption. Blood Cells Mol Dis. 2002;29:367-75.
Chen H, Attieh ZK, Su T, Syed BA, Gao H, Alaeddine RM, et al. Hephaestin is a ferroxidase that maintains partial activity in sex-linked anemia mice. Blood. 2004;103:3933-9.
Yeh KY, Yeh M, Glass J. Interactions between ferroportin and hephaestin in rat enterocytes are reduced after iron ingestion. Gastroenterology. 2011;141:292-9.
GenBank. hephaestin isoform b [Homo sapiens]. NCBI Reference Sequence: NP_055614.1. 2015. [citado agosto de 2015]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/NP_055614.1
Prohaska JR. Impact of copper limitation on expression and function of multicopper oxidases (Ferroxidases). Adv Nutr. 2011;2:89-95.
GenBank. feline leukemia virus subgroup C receptor-related protein 1 [Homo sapiens]. NCBI Reference Sequence: NP_054772.1. 2015. [citado agosto de 2015]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/NP_054772.1
Chiabrando D, Vinchi F, Fiorito V, Mercurio S, Tolosano E. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front Pharmacol. 2014;5:61.
Gozzelino R, Arosio P. Iron homeostasis in health and disease. Int J Mol Sci. 2016;17:130.
GenBank. RecName: Full=Feline leukemia virus subgroup C receptor-related protein 2; AltName: Full=Calcium-chelate transporter; Short=CCT. UniProtKB/Swiss-Prot: Q9UPI3.1 2016. [citado febrero de 2016]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/Q9UPI3.1
GenBank. RecName: Full=Zinc transporter ZIP8; AltName: Full=BCG-induced integral membrane protein in monocyte clone 103 protein; AltName: Full=LIV-1 subfamily of ZIP zinc transporter 6; Short=LZT-Hs6; AltName: Full=Solute carrier family 39 member 8; AltName: Full= UniProtKB/Swiss-Prot: Q9UPI3.1. 2016. [citado febrero de 2016]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/Q9C0K1.1
Gen. RecName: Full=Zinc transporter ZIP14; AltName: Full=Factor for adipocyte differentiation 123; Short=FAD-123; AltName: Full=Solute carrier family 39 member 14; AltName: Full=Zrt- and Irt-like protein 14; Short=ZIP-14; Flags: Precursor. Uni-ProtKB/Swiss-Prot: Q75N73.1. 2016. [citado febrero de 2016]. Disponible en: http://www.ncbi.nlm.nih.gov/protein/Q75N73.1
Jenkitkasemwong S, Wang CY, MacKenzie B, Knutson MD. Physiologic implications of metal-ion transport by ZIP14 and ZIP8. BioMetals. 2012;25:643-55.
Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of Iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci. 2016;41:274-86.
Published
How to Cite
Issue
Section
License
Derechos de autor 2024 Universidad de Antioquia