Content of total polar compounds in previously used cooking oils most marketed in Medellin (Colombia)

Authors

  • Claudia María Ramírez Botero Universidad de Antioquia
  • Briana Davahiva Gómez Ramírez Universidad de Antioquia
  • Adriana Cecilia Suaterna Hurtado Universidad Industrial de Santander
  • Julían Paul Martínez Galán Universidade Estadual Paulista
  • Luz Margarita Cardona Zuleta Universidad de Antioquia
  • Benjamín Alberto Rojano National University of Colombia

DOI:

https://doi.org/10.17533/udea.penh.10958

Keywords:

oils, polar compounds, chromatography, refinement, fatty acids

Abstract

Background: Concentration of polar compounds in cooking oils is an indicator of high temperatures damage and health risks. However, for some oils, the increase of those compounds is due to beneficial health substances. Although there is not an international standard, investigations report between 0,5-3,0% of polar compounds in previously used oil. Depending on the type of compound they may have beneficial or adverse effects. Objective: to determine total PC content in previously used cooking oils most marketed in Medellín (Colombia). Method and materials: 14 commercial brands of cooking oil were studied (olive, canola, sunflower and blended oils) and polar compound quantity was determined following IUPAC, 2000 methodology, with some modifications. Results: PC content was lower in canola oils (1,22±1,70), followed by sunflower oils (1,96±3,30). Olive and blended oils presented the highest content of PC (3,29±0,14 and 4,69±3,90 respectively). In 7 samples, PC content was higher than 3%. This percentage corresponded to olive, blended and one brand of sunflower oil. No significant differences were found among PC averages according to oil type and brand. Conclusion: the different types of cooking oil studied showed a percentage of CP within the range reported in the literature.

|Abstract
= 2633 veces | PDF (ESPAÑOL (ESPAÑA))
= 969 veces|

Downloads

Download data is not yet available.

Author Biographies

Claudia María Ramírez Botero, Universidad de Antioquia

School of Nutrition and Dietetics, Research Group on the Impact of Food Components on Health, Universidad de Antioquia. Medellin Colombia.

Briana Davahiva Gómez Ramírez, Universidad de Antioquia

School of Nutrition and Dietetics, Research Group on the Impact of Food Components on Health, Universidad de Antioquia. Medellin Colombia.

Adriana Cecilia Suaterna Hurtado, Universidad Industrial de Santander

Research group on the impact of food components on health, School of Nutrition and Dietetics, Universidad de Antioquia. Universidad Industrial de Santander. Bucaramanga-Colombia.

Julían Paul Martínez Galán, Universidade Estadual Paulista

Doctoral student in Food and Nutrition- UNESP, Research Group Impact of food components on health. Universidade Estadual Paulista. Sao Paulo- Brazil.

 

Luz Margarita Cardona Zuleta, Universidad de Antioquia

School of Nutrition and Dietetics, Research Group on the Impact of Food Components on Health, Universidad de Antioquia. Medellin Colombia.

Benjamín Alberto Rojano, National University of Colombia

Natural Products Research Group, National University of Colombia, Medellín headquarters.  

References

Icontec. Grasas y aceites animales y vegetales: determinación del contenido de compuestos polares: NTC 5225. Bogotá; 2003.

Dobarganes MC, Velasco J, Dieffenbacher A. Determination of polar compounds, polymerized and oxidized triacylglycerols and diacylglycerols in oils and fats: results of Collaborative Studies and the Standardized Method (IUPAC). Pure Appl Chem.2000;72:1563-75.

Bilancia MT, Sikorska E, Pasqualone A. Correlation of triacylglycerol oligopolymers and oxidised triacylglycerols to quality parameters in extra virgin olive oil during storage. Food Res Int. 2007;40:855-61.

Ubhayasekera S.JKA, Dutta PC. Sterols and oxidized sterols in feed ingredients obtained from chemical and physical refining processes of fats and oils. J Am Oil Chem Soc. 2009;86:595-604.

Pérez-Camino MC, Ruiz-Méndez MV, Márquez-Ruiz G, Dobarganes MC. Aceites de oliva vírgenes y refinados: Diferencias en componentes menores glicerídicos. Grasas Aceites. 1993;44:91-6.

Hazebroek JP. Analysis of genetically modified oils. Progr Lipid Res. 2000;39:477-506.

Gerde JA, Hardy CL, Hurburgh CR, White P. Rapid determination of degradation in frying oils with near-infrared spectroscopy. J Am Oil Chem Soc. 2007;84:519-22.

Dellagli M, E B. Minor polar compounds of olive oil: composition, factors of variability and bioactivity. Stud Nat Prod Chem. 2007;27:697-734.

Koprivnjak O, Skevinb S, Petricevićc K, Bubolad B, Mokrovcakb Z. Bitterness odor properties and volatile compounds of virgin olive oil with phospholipids addition. Food Sci Technol Int. 2009;42:50-5.

Colomer F. Efectos antioxidantes del aceite de oliva y de sus compuestos fenólicos. [Tesis Doctoral]. Barcelona: Universidad Autónoma de Barcelona, Departamento de Medicina; 2003. [citado enero de 2012]. Disponible en: http://www.tdx.cat/bitstream/handle/10803/4431/mfc1de1.pdf?sequence=1

Librelotto J, Bastida S, Serrano A, Cofrades S, Jiménez-Colmenero F, Sánchez-Muniz FJ. Changes in fatty acids and polar material of restructured low-fat or walnut-added steaks pan-fried in olive oil. Meat Sci. 2008;80:431-41.

Marmesat S, Velasco L, Ruiz MV, Fernández JM, Dobarganes C. Thermostability of genetically modified sunflower oils differing in fatty acid and tocopherol compositions. Eur J Lipid Sci Technol. 2008;110:776-82.

Hein M, Henning H, Isengard HD. Determination of total polar parts with new methods for the quality survey of frying fats and oils Talanta. 1998;47:447-54.

Kita A, Lisinska G. The influence of oil type and frying temperatures on the texture and oil content of French fries. J Sci Food Agric. 2005;15:2600-04.

Hara K, Hasegawa K, Endo Y, Fujimoto K. Polymer and polar material content determination as basis for assessing thermally oxidative deterioration of soybean oil for potato heat cooking. Yukagaku. 1999;43:57-60.

Athias P, Ribot E, Grynberg A, Sebedio JL, Grandgirard A. Effects of cyclic fatty acid monomers on the function of cultured rat cardiac myocytes in normoxia and hypoxia. Nutr Res. 1992;6:737-45.

Joffre F, Martin JC, Genty M, Demaison L, Loreau O, Noël JP, et al. Kinetic parameters of hepatic oxidation of cyclic fatty acid monomers formed from linoleic and linolenic acids. J Nutr Biochem. 2001;12:554-8.

Onwumere F PR, Truong J. Methods and devices for measuring total polar compounds in degrading oils. Patent application publication. St Paul, MN: Innovative Properties Company; 2008 [citado enero de 2012]. Disponible en: http://www.freshpatents.com/Methods-and-devices-for-measuring-total-polar-compounds-indegrading-oils-dt20070301ptan20070048871.php2008.

Ruiz-Méndes MV, Dobarganes MC. Oil refining. Sevilla: Instituto de la Grasa; 2011. [citado enero de 2012]. Disponible en: http://lipidlibrary.aocs.org/frying/c-refining/index.htm.

Colombia. Ministerio de Salud. Resolución 000126 de 1964 por la cual se dictan normas sobre la elaboración y control de grasas y aceites comestibles para consumo humano. Bogotá; 1964. [citado enero de 2012]. Disponible en: http://tinyurl.com/cqe5amw.

Asograsas. El cartel del aceite pirata. Bogotá; 2010. [citado enero de 2012]. Disponible en: http://www.citytv.com.co/videos/207872/asi-operan-los-carteles-de-aceites-comestibles.

Dobarganes MC, Velasco J, Márquez-Ruiz G. La calidad de los aceites y grasas de fritura. Alim Nutr Salud. 2002;9:109-18.

Bastida S, Sánchez-Muniz FJ. Polar content vs. TAG oligomer content in the frying-life assessment of monounsaturated and polyunsaturated oils used in deep-frying. J Am Oil Chem Soc. 2002;79:447-51.

Sánchez-Muniz FJ, Bastida S, González-Muñoz MJ. Column and high-performance size exclusion chromatography applications to the in vivo digestibility study of a thermoxidized and polymerized olive oil. Lipids. 1999;34:1187-92.

Karakaya S, Ebnem S. Changes in total polar compounds, peroxide value, total phenols and antioxidant activity of various oils used in deep fat frying. J Am Oil Chem Soc. 2011;88:1361-6.

Sánchez-Gimenoa AC, Negueruela AI, Benito M, Verceta A, Oria R. Some physical changes in Bajo Aragón extra virgin olive oil during the frying process. Food Chem. 2008;110:654-8.

Kalogeropoulos N, Chiou A, Mylona A, Ioannou MS, Andrikopoulos NK. Recovery and distribution of natural antioxidants (a-tocopherol, polyphenols and terpenic acids) after pan-frying of Mediterranean finfish in virgin olive oil. Food Chem. 2007;100:509-17.

Gomes T, Delcuratolo D, Michele Paradiso V. Pro-oxidant action of polar triglyceride oligopolymers in edible vegetable oils. Eur Food Res Technol 2008;226:1409-41.

Ancin MC, Martínez MT. Estudio de la degradación de los aceites de oliva sometidos a fritura I: Determinación estadística del parámetro que mejor cuantifica esta degradación. Grasas Aceites. 1991;42:22-31.

Tarino PW, Sun Q, Hu FB, Krauss RM. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am J Clin Nutr. 2010;91:535-46.

Strup A, Dyerberg J, Elwood Pet, Hermansen K. The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: where does the evidence stand in 2010? Am J Clin Nutr. 2011;93:684-8.

FAO. Selección de usos de las grasas y de los aceites en la alimentación Roma, 2005. [citado enero de 2012]. Disponible en: http://www.fao.org/docrep/V4700S/v4700s0a.htm.

Gunstone FD. Vegetable oils in food technology: composition, properties and uses. 2 ed. New York: Blackwell Publishing Ltd; 2011.

Cuesta O, Sánchez FJ, López S, Garrido MC, García L. Alteración termoxidativa en un aceite de girasol utilizado en 75 frituras de patatas: Efectos de su inclusión en dietas sobre crecimiento e ingesta en ratas. Grasas Aceites. 1993;44:263-9.

Botega DZ, Bastida S, Marmesat S, Pérez-Olleros L, Ruiz-Roso B, Sánchez-Muniz J. Carob fruit polyphenols reduce tocopherol loss, triacylglycerol polymerization and oxidation in heated sunflower oil. J Am Oil Chem Soc. 2009;86:419-25.

Cruzian JL, Inhamuns AJ, Barrera Arellano D. Determinación de compuestos polares por TLC-FID en aceites refinado y semihidrogenado de soja sometidos a calentamiento prolongado. Grasas Aceites. 1997;48:148-53.

Pambou NP, Nzikou J, Matos L, Ndangui C, Kimbonguila A, Abena A, et al. Comparative study of stability measurements for two frying oils: soybean oil and refined palm oil. Adv J Food Sci Technol. 2010;2:22-7.

Rossi M, Alamprese C, Ratti S. Tocopherols and tocotrienols as free radical-scavengers in refined vegetable oils and their stability during deep-fat frying. Food Chem. 2007;102:812-7.

Published

2012-12-15

How to Cite

Ramírez Botero, C. M., Gómez Ramírez, B. D. ., Suaterna Hurtado, A. C., Martínez Galán, J. P., Cardona Zuleta, L. M. ., & Rojano, B. A. (2012). Content of total polar compounds in previously used cooking oils most marketed in Medellin (Colombia). Perspectivas En Nutrición Humana, 14(1), 59–69. https://doi.org/10.17533/udea.penh.10958

Issue

Section

Research

Most read articles by the same author(s)